A computer algorithm for determining the Hausdorff dimension of certain fractals

Author:
Lucy Garnett

Journal:
Math. Comp. **51** (1988), 291-300

MSC:
Primary 58F11; Secondary 30D05

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942156-0

MathSciNet review:
942156

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A fractal is a set which has nonintegral Hausdorff dimension. Computation of the dimension directly from the definition would be very time-consuming on a computer. However, the dimension can be computed using Newton's method if there exists a self-expanding map on the set. This technique is applied to compute the dimension of the Julia set of the quadratic mapping for small real values of *c*.

**[1]**R. Bowen, "Hausdorff dimension of quasi-circles,"*Inst. Hautes Études Sci. Publ. Math.*, No. 50, 1979, pp. 11-25. MR**556580 (81g:57023)****[2]**P. Blanchard, "Complex analytic dynamics on the Riemann sphere,"*Bull. Amer. Math. Soc.*(*N.S.*), v. 11, 1984, pp. 85-141. MR**741725 (85h:58001)****[3]**A. Douady & J. Hubbard, "Iteration des polynomes quadratiques complexes,"*C.R. Acad. Sci. Paris Ser. I Math.*, v. 294, 1982, pp. 123-126. MR**651802 (83m:58046)****[4]**B. Mandelbrot,*The Fractal Geometry of Nature*, Freeman, San Francisco, Calif., 1983. MR**665254 (84h:00021)****[5]**B. Mandelbrot, "Fractal aspects of the iteration of for complex and*z*,"*Nonlinear Dynamics*(Internat. Conf., New York, 1979),*Ann. New York Acad. Sci.*, vol. 357, New York Acad. Sci., New York, 1980, pp. 249-259. MR**556850 (81f:00010)****[6]**V. A. Norton, "Generation and display of geometric fractals in 3-D,"*Computer Graphics*, v. 16, 1982, pp. 61-67.**[7]**E. Ott, "Strange attractors and chaotic motions of dynamical systems,"*Rev. Modern Phys.*, v. 53, 1981, pp. 655-671. MR**629209 (83d:58037)****[8]**C. A. Rogers,*Hausdorff Measures*, Cambridge University Press, Oxford, 1970. MR**0281862 (43:7576)****[9]**D. Ruelle, "Repellere for real analytic maps,"*Ergodic Theory Dynamical Systems*, v. 2, 1982, pp. 99-108. MR**684247 (84f:58095)****[10]**D. Sullivan,*Seminar on Conformal and Hyperbolic Geometry*, Inst. Hautes Études Sci. Seminar notes, 1982, pp. 1-92.

Retrieve articles in *Mathematics of Computation*
with MSC:
58F11,
30D05

Retrieve articles in all journals with MSC: 58F11, 30D05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942156-0

Article copyright:
© Copyright 1988
American Mathematical Society