A computer algorithm for determining the Hausdorff dimension of certain fractals
Author:
Lucy Garnett
Journal:
Math. Comp. 51 (1988), 291300
MSC:
Primary 58F11; Secondary 30D05
MathSciNet review:
942156
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A fractal is a set which has nonintegral Hausdorff dimension. Computation of the dimension directly from the definition would be very timeconsuming on a computer. However, the dimension can be computed using Newton's method if there exists a selfexpanding map on the set. This technique is applied to compute the dimension of the Julia set of the quadratic mapping for small real values of c.
 [1]
Rufus
Bowen, Hausdorff dimension of quasicircles, Inst. Hautes
Études Sci. Publ. Math. 50 (1979), 11–25. MR 556580
(81g:57023)
 [2]
Paul
Blanchard, Complex analytic dynamics on the
Riemann sphere, Bull. Amer. Math. Soc.
(N.S.) 11 (1984), no. 1, 85–141. MR 741725
(85h:58001), http://dx.doi.org/10.1090/S027309791984152406
 [3]
Adrien
Douady and John
Hamal Hubbard, Itération des polynômes quadratiques
complexes, C. R. Acad. Sci. Paris Sér. I Math.
294 (1982), no. 3, 123–126 (French, with
English summary). MR 651802
(83m:58046)
 [4]
Benoit
B. Mandelbrot, The fractal geometry of nature, W. H. Freeman
and Co., San Francisco, Calif., 1982. Schriftenreihe für den
Referenten. [Series for the Referee]. MR 665254
(84h:00021)
 [5]
Benoit
B. Mandelbrot, Discussion paper: fractals, attractors, and the
fractal dimension, Bifurcation theory and applications in scientific
disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci.,
vol. 316, New York Acad. Sci., New York, 1979, pp. 463–464.
MR 556850
(81f:00010)
 [6]
V. A. Norton, "Generation and display of geometric fractals in 3D," Computer Graphics, v. 16, 1982, pp. 6167.
 [7]
Edward
Ott, Strange attractors and chaotic motions of dynamical
systems, Rev. Modern Phys. 53 (1981), no. 4,
655–671. MR
629209 (83d:58037), http://dx.doi.org/10.1103/RevModPhys.53.655
 [8]
C.
A. Rogers, Hausdorff measures, Cambridge University Press,
LondonNew York, 1970. MR 0281862
(43 #7576)
 [9]
David
Ruelle, Repellers for real analytic maps, Ergodic Theory
Dynamical Systems 2 (1982), no. 1, 99–107. MR 684247
(84f:58095)
 [10]
D. Sullivan, Seminar on Conformal and Hyperbolic Geometry, Inst. Hautes Études Sci. Seminar notes, 1982, pp. 192.
 [1]
 R. Bowen, "Hausdorff dimension of quasicircles," Inst. Hautes Études Sci. Publ. Math., No. 50, 1979, pp. 1125. MR 556580 (81g:57023)
 [2]
 P. Blanchard, "Complex analytic dynamics on the Riemann sphere," Bull. Amer. Math. Soc. (N.S.), v. 11, 1984, pp. 85141. MR 741725 (85h:58001)
 [3]
 A. Douady & J. Hubbard, "Iteration des polynomes quadratiques complexes," C.R. Acad. Sci. Paris Ser. I Math., v. 294, 1982, pp. 123126. MR 651802 (83m:58046)
 [4]
 B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, Calif., 1983. MR 665254 (84h:00021)
 [5]
 B. Mandelbrot, "Fractal aspects of the iteration of for complex and z," Nonlinear Dynamics (Internat. Conf., New York, 1979), Ann. New York Acad. Sci., vol. 357, New York Acad. Sci., New York, 1980, pp. 249259. MR 556850 (81f:00010)
 [6]
 V. A. Norton, "Generation and display of geometric fractals in 3D," Computer Graphics, v. 16, 1982, pp. 6167.
 [7]
 E. Ott, "Strange attractors and chaotic motions of dynamical systems," Rev. Modern Phys., v. 53, 1981, pp. 655671. MR 629209 (83d:58037)
 [8]
 C. A. Rogers, Hausdorff Measures, Cambridge University Press, Oxford, 1970. MR 0281862 (43:7576)
 [9]
 D. Ruelle, "Repellere for real analytic maps," Ergodic Theory Dynamical Systems, v. 2, 1982, pp. 99108. MR 684247 (84f:58095)
 [10]
 D. Sullivan, Seminar on Conformal and Hyperbolic Geometry, Inst. Hautes Études Sci. Seminar notes, 1982, pp. 192.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
58F11,
30D05
Retrieve articles in all journals
with MSC:
58F11,
30D05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198809421560
PII:
S 00255718(1988)09421560
Article copyright:
© Copyright 1988
American Mathematical Society
