Computing heights on elliptic curves

Author:
Joseph H. Silverman

Journal:
Math. Comp. **51** (1988), 339-358

MSC:
Primary 11G05; Secondary 11D25, 11Y40, 14G25, 14K15

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942161-4

MathSciNet review:
942161

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe how to compute the canonical height of points on elliptic curves. Tate has given a rapidly converging series for Archimedean local heights over **R**. We describe a modified version of Tate's series which also converges over **C**, and give an efficient procedure for calculating local heights at non-Archimedean places. In this way we can calculate heights over number fields having complex embeddings. We also give explicit estimates for the tail of our series, and present several examples.

**[1]**J. P. Buhler, B. H. Gross & D. B. Zagier, "On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3,"*Math. Comp.*, v. 44, 1985, pp. 473-481. MR**777279 (86g:11037)****[2]**D. Cox & S. Zucker, "Intersection numbers of sections of elliptic surfaces,"*Invent. Math.*, v. 53, 1979, pp. 1-44. MR**538682 (81i:14023)****[3]**P. Deligne, "Courbes Elliptiques: Formulaire (d'après J. Tate)," in*Modular Functions of One Variable IV*, Lecture Notes in Math., vol. 476, Springer-Verlag, Berlin and New York, 1975, pp. 53-74. MR**0387292 (52:8135)****[4]**B. H. Gross, "Local heights on curves," in*Arithmetic Geometry*, Springer-Verlag, Berlin and New York, 1986, pp. 327-340. MR**861983****[5]**B. H. Gross & D. B. Zagier, "Heegner points and derivatives of*L*-series,"*Invent. Math.*, v. 84, 1986, 225-320. MR**833192 (87j:11057)****[6]**S. Lang,*Elliptic Curves*:*Diophantine Analysis*, Springer-Verlag, Berlin and New York, 1978. MR**518817 (81b:10009)****[7]**S. Lang,*Fundamentals of Diophantine Geometry*, Springer-Verlag, Berlin and New York, 1983. MR**715605 (85j:11005)****[8]**M. Laska, "An algorithm for finding a minimal Weierstrass equation for an elliptic curve,"*Math. Comp.*, v. 38, 1982, pp. 257-260. MR**637305 (84e:14033)****[9]**D. Masser & G. Wüstholz, "Fields of large transcendence degree generated by values of elliptic functions,"*Invent. Math.*, v. 72, 1983, pp. 407-464. MR**704399 (85g:11060)****[10]**J. H. Silverman,*The Néron-Tate Height on Elliptic Curves*, Ph.D. thesis, Harvard, 1981.**[11]**J. H. Silverman,*The Arithmetic of Elliptic Curves*, Graduate Text 106, Springer, New York, 1986. MR**817210 (87g:11070)****[12]**J. H. Silverman, "A quantitative version of Siegel's theorem,"*J. Reine Angew. Math.*, v. 378, 1987, pp. 60-100. MR**895285 (89g:11047)****[13]**J. H. Silverman, Elliptic Curve Calculator v. 5.05, a program for the Apple Macintosh computer, 1987.**[14]**J. T. Tate, "Algorithm for finding the type of a singular fibre in an elliptic pencil," in*Modular Functions of One Variable IV*, Lecture Notes in Math., vol. 476, Springer-Verlag, Berlin and New York, 1975, pp. 33-52. MR**0393039 (52:13850)****[15]**J. T. Tate, Letter to J.-P. Serre, Oct. 1, 1979.**[16]**H. M. Tschöpe & H. G. Zimmer, "Computation of the Néron-Tate height on elliptic curves,"*Math. Comp.*, v. 48, 1987, pp. 351-370. MR**866121 (87m:14025)****[17]**B. L. van der Waerden,*Algebra*, 7th ed., Ungar, New York, 1970.**[18]**D. B. Zagier, "Large integral points on curves,"*Math. Comp.*, v. 48, 1987, pp. 425-436. MR**866125 (87k:11062)****[19]**H. G. Zimmer, "Quasifunctions on elliptic curves over local fields,"*J. Reine Angew. Math.*, v. 307/308, 1979, pp. 221-246; "Corrections and remarks concerning quasifunctions on elliptic curves,"*J. Reine Angew. Math.*, v. 343, 1983, pp. 203-211. MR**534221 (80g:14024)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11G05,
11D25,
11Y40,
14G25,
14K15

Retrieve articles in all journals with MSC: 11G05, 11D25, 11Y40, 14G25, 14K15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942161-4

Article copyright:
© Copyright 1988
American Mathematical Society