Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On the resolution of inhomogeneous norm form equations in two dominating variables

Author: István Gaál
Journal: Math. Comp. 51 (1988), 359-373
MSC: Primary 11D57
MathSciNet review: 942162
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Applying Baker's well-known method and the reduction procedure described by Baker and Davenport, we give a numerical algorithm for finding all solutions of inhomogeneous Thue equations of type

$\displaystyle {N_{K/Q}}(x + \alpha y + \lambda ) = 1$

in the variables $ x,y \in Z$ and $ \lambda \in {Z_K}$ with $ \lceil \lambda \rceil < (\max \vert x\vert,\vert y\vert){)^{1/2}}$, where $ K = Q(\alpha )$ is a totally real cubic field.

References [Enhancements On Off] (What's this?)

  • [1] A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967/1968), 173–191. MR 0228424
  • [2] Alan Baker, Transcendental number theory, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. MR 1074572
  • [3] A. Baker and H. Davenport, The equations 3𝑥²-2=𝑦² and 8𝑥²-7=𝑧², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 0248079
  • [4] J. Coates, An effective 𝑝-adic analogue of a theorem of Thue, Acta Arith. 15 (1968/1969), 279–305. MR 0242768
  • [5] W. J. Ellison, On sums of squares in 𝑄^{1/2}(𝑋) etc, Séminaire de Théorie des Nombres, 1970-1971 (Univ. Bordeaux I, Talence), Exp. No. 9, Lab. Théorie des Nombres, Centre Nat. Recherche Sci., Talence, 1971, pp. 5. MR 0392880
  • [6] W. J. Ellison, F. Ellison, J. Pesek, C. E. Stahl, and D. S. Stall, The Diophantine equation 𝑦²+𝑘=𝑥³, J. Number Theory 4 (1972), 107–117. MR 0316376
  • [7] I. Gaál, Norm form equations with several dominating variables and explicit lower bounds for inhomogeneous linear forms with algebraic coefficients, Studia Sci. Math. Hungar. 19 (1984), no. 2-4, 399–411. MR 874508
  • [8] I. Gaál, Norm form equations with several dominating variables and explicit lower bounds for inhomogeneous linear forms with algebraic coefficients. II, Studia Sci. Math. Hungar. 20 (1985), no. 1-4, 333–344. MR 886038
  • [9] K. Győry, Sur certaines généralisations de l’équation de Thue-Mahler, Enseign. Math. (2) 26 (1980), no. 3-4, 247–255 (1981) (French). MR 610525
  • [10] K. Györy, Résultats Effectifs sur la Représentation des Entiers par des Formes Décomposables, Queen's Papers in Pure and Appl. Math., No. 56, Kingston, Ontario, Canada, 1980.
  • [11] K. Győry, On 𝑆-integral solutions of norm form, discriminant form and index form equations, Studia Sci. Math. Hungar. 16 (1981), no. 1-2, 149–161. MR 703653
  • [12] K. Győry, Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains, Acta Math. Hungar. 42 (1983), no. 1-2, 45–80. MR 716553, 10.1007/BF01960551
  • [13] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 245–257. MR 820227
  • [14] Donald E. Knuth, The art of computer programming, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR 0378456
  • [15] S. V. Kotov, On Diophantine Equations of Norm Form Type II, Inst. Mat. Akad. Nauk BSSR, Preprint No. 10, Minsk, 1980. (Russian)
  • [16] S. V. Kotov, Effective Bounds for Linear Forms with Algebraic Coefficients in Archimedean and p-Adic Metrics, Inst. Mat. Akad. Nauk BSSR, Preprint No. 24, Minsk, 1981. (Russian)
  • [17] S. V. Kotov, An effective estimate for the bounds on the number of solutions of a class of Diophantine norm form equations, Mat. Zametki 33 (1983), no. 6, 801–806 (Russian). MR 709218
  • [18] Attila Pethő, On the resolution of Thue inequalities, J. Symbolic Comput. 4 (1987), no. 1, 103–109. MR 908418, 10.1016/S0747-7171(87)80059-7
  • [19] A. Pethő and R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987), no. 3-4, 189–196 (German). MR 934900
  • [20] T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, Cambridge Tracts in Mathematics, vol. 87, Cambridge University Press, Cambridge, 1986. MR 891406
  • [21] V. G. Sprindžuk, Representation of numbers by the norm forms with two dominating variables, J. Number Theory 6 (1974), 481–486. Collection of articles dedicated to K. Mahler on the occasion of his seventieth birthday. MR 0354567
  • [22] Ray P. Steiner, On Mordell’s equation 𝑦²-𝑘=𝑥³: a problem of Stolarsky, Math. Comp. 46 (1986), no. 174, 703–714. MR 829640, 10.1090/S0025-5718-1986-0829640-3
  • [23] R. Tijdeman, Hilbert’s seventh problem: on the Gel′fond-Baker method and its applications, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R. I., 1976, pp. 241–268. MR 0434974
  • [24] Michel Waldschmidt, A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257–283. MR 598881

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11D57

Retrieve articles in all journals with MSC: 11D57

Additional Information

Keywords: Computer solution of Diophantine equations, Thue equation, Davenport's lemma
Article copyright: © Copyright 1988 American Mathematical Society