Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Spectral methods and a maximum principle


Author: Claudio Canuto
Journal: Math. Comp. 51 (1988), 615-629
MSC: Primary 65N30; Secondary 65N35
DOI: https://doi.org/10.1090/S0025-5718-1988-0930226-2
MathSciNet review: 930226
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various spectral Chebyshev approximations of a model boundary layer problem for both a Helmholtz and an advection-diffusion operator are considered. It is assumed that simultaneously the boundary layer width tends to zero and the resolution power of the numerical method tends to infinity. The behavior of the spectral solutions in the frequency space and in the physical space is investigated. Error estimates are derived.


References [Enhancements On Off] (What's this?)

  • [1] C. Canuto, Spectral Methods and a Maximum Principle, IAN-CNR Report n. 476, Pavia, Italy, 1986.
  • [2] C. Canuto & D. Funaro, "The Schwarz algorithm for spectral methods," SIAM J. Numer. Anal., v. 25, 1988, pp. 24-40. MR 923923 (89b:65286)
  • [3] C. Canuto, M. Y. Hussaini, A. Quarteroni & T. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1987. MR 917480 (89m:76004)
  • [4] C. Canuto & A. Quarteroni, "Spectral and pseudo-spectral methods for parabolic problems with nonperiodic boundary conditions," Calcolo, v. 18, 1981, pp. 197-217. MR 647825 (84h:35132)
  • [5] C. Canuto & G. Sacchi Landriani, "Analysis of the Kleiser-Schumann method," Numer. Math., v. 50, 1986, pp. 217-243. MR 866138 (88f:65191)
  • [6] Ph. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [7] W. Eckhaus, Singular Perturbations, North-Holland, Amsterdam, 1973.
  • [8] D. Gottlieb & S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia, Pa., 1977. MR 0520152 (58:24983)
  • [9] H. O Kreiss & J. Oliger, "Stability of the Fourier method," SIAM J. Numer. Anal., v. 16, 1979, pp. 421-433. MR 530479 (80i:65130)
  • [10] J. L. Lions, Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lecture Notes in Math., Vol. 323, Springer-Verlag, Berlin, 1973. MR 0600331 (58:29078)
  • [11] A. Majda, J. McDonough & S. Osher, "The Fourier method for nonsmooth initial data," Math. Comp., v. 32, 1978, pp. 1041-1081. MR 501995 (80a:65197)
  • [12 Y] Maday & A. Quarteroni, "Legendre and Chebyshev spectral approximations of Burgers' equation," Numer. Math., v. 37, 1981, pp. 321-332. MR 627106 (83c:65246)
  • [13] S. A. Orszag & M. Y Israeli, "Numerical simulation of viscous incompressible flows," Ann. Rev. Fluid Mech., v. 6, 1974, pp. 281-318.
  • [14] R. G. Voigt, D. Gottlieb & M. Y. Hussaini (Eds.), Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, Pa., 1984. MR 758260 (85g:76003)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N35

Retrieve articles in all journals with MSC: 65N30, 65N35


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1988-0930226-2
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society