The construction of preconditioners for elliptic problems by substructuring. III
Authors:
James H. Bramble, Joseph E. Pasciak and Alfred H. Schatz
Journal:
Math. Comp. 51 (1988), 415430
MSC:
Primary 65N30; Secondary 65F10
MathSciNet review:
935071
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In earlier parts of this series of papers, we constructed preconditioners for the discrete systems of equations arising from the numerical approximation of elliptic boundary value problems. The resulting algorithms are well suited for implementation on computers with parallel architecture. In this paper, we will develop a technique which utilizes these earlier methods to derive even more efficient preconditioners. The iterative algorithms using these new preconditioners converge to the solution of the discrete equations with a rate that is independent of the number of unknowns. These preconditioners involve an incomplete Chebyshev iteration for boundary interface conditions which results in a negligible increase in the amount of computational work. Theoretical estimates and the results of numerical experiments are given which demonstrate the effectiveness of the methods.
 [1]
Petter
E. Bjørstad and Olof
B. Widlund, Solving elliptic problems on regions partitioned into
substructures, Elliptic problem solvers, II (Monterey, Calif., 1983)
Academic Press, Orlando, FL, 1984, pp. 245–255. MR
764237
 [2]
Petter
E. Bjørstad and Olof
B. Widlund, Iterative methods for the solution of elliptic problems
on regions partitioned into substructures, SIAM J. Numer. Anal.
23 (1986), no. 6, 1097–1120. MR 865945
(88h:65188), http://dx.doi.org/10.1137/0723075
 [3]
J.
H. Bramble, J.
E. Pasciak, and A.
H. Schatz, An iterative method for elliptic
problems on regions partitioned into substructures, Math. Comp. 46 (1986), no. 174, 361–369. MR 829613
(88a:65123), http://dx.doi.org/10.1090/S00255718198608296130
 [4]
J.
H. Bramble, J.
E. Pasciak, and A.
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125
(87m:65174), http://dx.doi.org/10.1090/S00255718198608421253
 [5]
J.
H. Bramble, J.
E. Pasciak, and A.
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. II, Math. Comp. 49 (1987), no. 179, 1–16. MR 890250
(88j:65248), http://dx.doi.org/10.1090/S00255718198708902504
 [6]
B.
L. Buzbee and Fred
W. Dorr, The direct solution of the biharmonic equation on
rectangular regions and the Poisson equation on irregular regions,
SIAM J. Numer. Anal. 11 (1974), 753–763. MR 0362944
(50 #15382)
 [7]
B.
L. Buzbee, F.
W. Dorr, J.
A. George, and G.
H. Golub, The direct solution of the discrete Poisson equation on
irregular regions, SIAM J. Numer. Anal. 8 (1971),
722–736. MR 0292316
(45 #1403)
 [8]
Q. V. Dihn, R. Glowinski & J. Périaux, "Solving elliptic problems by domain decomposition methods," in Elliptic Problem Solvers II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, New York, 1984, pp. 395426.
 [9]
G. H. Golub & D. Meyers, The Use of Preconditioning Over Irregular Regions, Proc. 6th Internat. Conf. Comput. Meth. Sci. and Engrg., Versailles, 1983.
 [10]
J. L. Lions & E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunod, Paris, 1968.
 [11]
J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague, 1967.
 [12]
W. M. Patterson, 3rd, Iterative Methods for the Solution of a Linear Operator Equation in Hilbert SpaceA Survey, Lecture Notes in Math., vol. 394, SpringerVerlag, New York, 1974.
 [1]
 P. E. Bjørstad & O. B. Widlund, "Solving elliptic problems on regions partitioned into substructures," Elliptic Problem Solvers II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, New York, 1984, pp. 245256. MR 764237
 [2]
 P. E. Bjørstad & O. B. Widlund, "Iterative methods for the solution of elliptic problems on regions partitioned into substructures," SIAM J. Numer. Anal., v. 23, 1986, pp. 10971120. MR 865945 (88h:65188)
 [3]
 J. H. Bramble, J. E. Pasciak & A. H. Schatz, "An iterative method for elliptic problems on regions partitioned into substructures," Math. Comp., v. 46, 1986, pp. 361369. MR 829613 (88a:65123)
 [4]
 J. H. Bramble, J. E. Pasciak & A. H. Schatz, "The construction of preconditioners for elliptic problems by substructuring, I," Math. Comp., v. 47, 1986, pp. 103134. MR 842125 (87m:65174)
 [5]
 J. H. Bramble, J. E. Pasciak & A. H. Schatz, "The construction of preconditioners for elliptic problems by substructuring, II," Math. Comp., v. 49, 1987, pp. 116. MR 890250 (88j:65248)
 [6]
 B. L. Buzbee & F. W. Dorr, "The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions," SIAM J. Numer. Anal., v. 11, 1974, pp. 753763. MR 0362944 (50:15382)
 [7]
 B. L. Buzbee, F. W. Dorr, J. A. George & G. H. Golub, "The direct solution of the discrete Poisson equation on irregular regions," SIAM J. Numer. Anal., v. 8, 1971, pp. 722736. MR 0292316 (45:1403)
 [8]
 Q. V. Dihn, R. Glowinski & J. Périaux, "Solving elliptic problems by domain decomposition methods," in Elliptic Problem Solvers II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, New York, 1984, pp. 395426.
 [9]
 G. H. Golub & D. Meyers, The Use of Preconditioning Over Irregular Regions, Proc. 6th Internat. Conf. Comput. Meth. Sci. and Engrg., Versailles, 1983.
 [10]
 J. L. Lions & E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunod, Paris, 1968.
 [11]
 J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague, 1967.
 [12]
 W. M. Patterson, 3rd, Iterative Methods for the Solution of a Linear Operator Equation in Hilbert SpaceA Survey, Lecture Notes in Math., vol. 394, SpringerVerlag, New York, 1974.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N30,
65F10
Retrieve articles in all journals
with MSC:
65N30,
65F10
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819880935071X
PII:
S 00255718(1988)0935071X
Article copyright:
© Copyright 1988
American Mathematical Society
