A thirdorder accurate variation nonexpansive difference scheme for single nonlinear conservation laws
Author:
Richard Sanders
Journal:
Math. Comp. 51 (1988), 535558
MSC:
Primary 65M10; Secondary 35L65
MathSciNet review:
935073
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It was widely believed that all variation nonexpansive finite difference schemes for single conservation laws must reduce to firstorder at extreme points of the approximation. It is shown here that this belief is in fact false. A thirdorder scheme, which at worst may reduce to second order at extreme points, is developed and analyzed. Moreover, extensive numerical experiments indicate that the thirdorder scheme introduced here yields superior approximations when compared with other variation nonexpansive difference schemes.
 [1]
Matania
BenArtzi and Joseph
Falcovitz, A secondorder Godunovtype scheme for compressible
fluid dynamics, J. Comput. Phys. 55 (1984),
no. 1, 1–32. MR 757422
(86f:65146), http://dx.doi.org/10.1016/00219991(84)900135
 [2]
S. R. Chakravarthy, A. Harten & S. Osher, Essentially NonOscillatory ShockCapturing Schemes of Arbitrarily High Accuracy, AIAA 24th Aerospace Sciences Meeting, January 69, 1986, Reno, Nevada.
 [3]
P. Colella & P. R. Woodward, "The piecewiseparabolic method (PPM) for gasdynamical simulations," J. Comput. Phys., v. 54, 1984, pp. 174201.
 [4]
S. D. Conte & C. de Boor, Elementary Numerical Analysis, 3rd ed., McGrawHill, New York, 1980.
 [5]
Michael
G. Crandall and Andrew
Majda, Monotone difference approximations for
scalar conservation laws, Math. Comp.
34 (1980), no. 149, 1–21. MR 551288
(81b:65079), http://dx.doi.org/10.1090/S00255718198005512883
 [6]
S.
K. Godunov, A difference method for numerical calculation of
discontinuous solutions of the equations of hydrodynamics, Mat. Sb.
(N.S.) 47 (89) (1959), 271–306 (Russian). MR 0119433
(22 #10194)
 [7]
Ami
Harten, High resolution schemes for hyperbolic conservation
laws, J. Comput. Phys. 49 (1983), no. 3,
357–393. MR
701178 (84g:65115), http://dx.doi.org/10.1016/00219991(83)901365
 [8]
Ami
Harten, Björn
Engquist, Stanley
Osher, and Sukumar
R. Chakravarthy, Uniformly highorder accurate essentially
nonoscillatory schemes. III, J. Comput. Phys. 71
(1987), no. 2, 231–303. MR 897244
(90a:65199), http://dx.doi.org/10.1016/00219991(87)900313
 [9]
A.
Harten, J.
M. Hyman, and P.
D. Lax, On finitedifference approximations and entropy conditions
for shocks, Comm. Pure Appl. Math. 29 (1976),
no. 3, 297–322. With an appendix by B. Keyfitz. MR 0413526
(54 #1640)
 [10]
Ami
Harten and Stanley
Osher, Uniformly highorder accurate nonoscillatory schemes.
I, SIAM J. Numer. Anal. 24 (1987), no. 2,
279–309. MR
881365 (90a:65198), http://dx.doi.org/10.1137/0724022
 [11]
Peter
Lax, Shock waves and entropy, Contributions to nonlinear
functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin,
Madison, Wis., 1971), Academic Press, New York, 1971,
pp. 603–634. MR 0393870
(52 #14677)
 [12]
Richard
Sanders, On convergence of monotone finite
difference schemes with variable spatial differencing, Math. Comp. 40 (1983), no. 161, 91–106. MR 679435
(84a:65075), http://dx.doi.org/10.1090/S00255718198306794356
 [13]
Richard
Sanders, The moving grid method for nonlinear hyperbolic
conservation laws, SIAM J. Numer. Anal. 22 (1985),
no. 4, 713–728. MR 795949
(87f:65110), http://dx.doi.org/10.1137/0722043
 [14]
P.
K. Sweby, High resolution schemes using flux limiters for
hyperbolic conservation laws, SIAM J. Numer. Anal. 21
(1984), no. 5, 995–1011. MR 760628
(85m:65085), http://dx.doi.org/10.1137/0721062
 [15]
B. van Leer, "Towards the ultimate conservative scheme, II. Monotonicity and conservation combined in a second order scheme," J. Comput. Phys., v. 14, 1974, pp. 361376.
 [1]
 M. BenArtzi & J. Falcovitz, "A secondorder Godunovtype scheme for compressible fluid dynamics," J. Comput. Phys., v. 55, 1984, pp. 132. MR 757422 (86f:65146)
 [2]
 S. R. Chakravarthy, A. Harten & S. Osher, Essentially NonOscillatory ShockCapturing Schemes of Arbitrarily High Accuracy, AIAA 24th Aerospace Sciences Meeting, January 69, 1986, Reno, Nevada.
 [3]
 P. Colella & P. R. Woodward, "The piecewiseparabolic method (PPM) for gasdynamical simulations," J. Comput. Phys., v. 54, 1984, pp. 174201.
 [4]
 S. D. Conte & C. de Boor, Elementary Numerical Analysis, 3rd ed., McGrawHill, New York, 1980.
 [5]
 M. Crandall & A. Majda, "Monotone difference approximations for scalar conservation laws," Math. Comp., v. 34, 1980, pp. 122. MR 551288 (81b:65079)
 [6]
 S. K. Godunov, "A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics," Mat. Sb., v. 47, 1959, pp. 271295. MR 0119433 (22:10194)
 [7]
 A. Harten, "High resolution schemes for hyperbolic conservation laws," J. Comput. Phys., v. 49, 1983, pp. 357393. MR 701178 (84g:65115)
 [8]
 A. Harten, B. Engquist, S. Osher & S. R. Chakravarthy, "Uniformly high order accurate essentially nonoscillatory schemes III," J. Comput. Phys., v. 71, 1987, pp. 231303. MR 897244 (90a:65199)
 [9]
 A. Harten, J. M. Hyman & P. D. Lax, "On finite difference approximations and entropy conditions for shocks," Comm. Pure Appl. Math., v. 29, 1976, pp. 297322. MR 0413526 (54:1640)
 [10]
 A. Harten & S. Osher, "Uniformly highorder accurate nonoscillatory schemes I," SIAM J. Numer. Anal., v. 24, 1987, pp. 279309. MR 881365 (90a:65198)
 [11]
 P. D. Lax, "Shock waves and entropy," Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York, 1971, pp. 603634. MR 0393870 (52:14677)
 [12]
 R. Sanders, "On convergence of monotone finite difference schemes with variable spatial differencing," Math. Comp., v. 40, 1983, pp. 91106. MR 679435 (84a:65075)
 [13]
 R. Sanders, "The moving grid method for nonlinear hyperbolic conservation laws," SIAM J. Numer. Anal., v. 22, 1985, pp. 713728. MR 795949 (87f:65110)
 [14]
 P. K. Sweby, "High resolution schemes using flux limiters for hyperbolic conservation laws," SIAM J. Numer. Anal., v. 21, 1984, pp. 9951011. MR 760628 (85m:65085)
 [15]
 B. van Leer, "Towards the ultimate conservative scheme, II. Monotonicity and conservation combined in a second order scheme," J. Comput. Phys., v. 14, 1974, pp. 361376.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65M10,
35L65
Retrieve articles in all journals
with MSC:
65M10,
35L65
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198809350733
PII:
S 00255718(1988)09350733
Article copyright:
© Copyright 1988 American Mathematical Society
