Accurate boundary conditions for exterior problems in gas dynamics

Authors:
Thomas Hagstrom and S. I. Hariharan

Journal:
Math. Comp. **51** (1988), 581-597

MSC:
Primary 65M99; Secondary 76N99

MathSciNet review:
935075

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that 'natural' reflections may be important. We propose a reflecting boundary condition based on an asymptotic solution of the far field equations. We obtain nonlinear energy estimates for the truncated problem and present numerical experiments to validate our theory.

**[1]**Alvin Bayliss and Eli Turkel,*Radiation boundary conditions for wave-like equations*, Comm. Pure Appl. Math.**33**(1980), no. 6, 707–725. MR**596431**, 10.1002/cpa.3160330603**[2]**Bjorn Engquist and Andrew Majda,*Absorbing boundary conditions for the numerical simulation of waves*, Math. Comp.**31**(1977), no. 139, 629–651. MR**0436612**, 10.1090/S0025-5718-1977-0436612-4**[3]**Bertil Gustafsson and Heinz-Otto Kreiss,*Boundary conditions for time-dependent problems with an artificial boundary*, J. Comput. Phys.**30**(1979), no. 3, 333–351. MR**529999**, 10.1016/0021-9991(79)90119-0**[4]**Bertil Gustafsson,*Inhomogeneous conditions at open boundaries for wave propagation problems*, Appl. Numer. Math.**4**(1988), no. 1, 3–19. MR**932316**, 10.1016/S0168-9274(88)80003-5**[5]**Bertil Gustafsson,*Far-field boundary conditions for time-dependent hyperbolic systems*, SIAM J. Sci. Statist. Comput.**9**(1988), no. 5, 812–828. MR**957473**, 10.1137/0909054**[6]**Thomas Hagstrom and H. B. Keller,*Exact boundary conditions at an artificial boundary for partial differential equations in cylinders*, SIAM J. Math. Anal.**17**(1986), no. 2, 322–341. MR**826697**, 10.1137/0517026**[7]**S. I. Hariharan and Alvin Bayliss,*Radiation of sound from unflanged cylindrical ducts*, SIAM J. Sci. Statist. Comput.**6**(1985), no. 2, 285–296. MR**779406**, 10.1137/0906021**[8]**G. W. Hedstrom,*Nonreflecting boundary conditions for nonlinear hyperbolic systems*, J. Comput. Phys.**30**(1979), no. 2, 222–237. MR**528200**, 10.1016/0021-9991(79)90100-1**[9]**Gary A. Sod,*Numerical methods in fluid dynamics*, Cambridge University Press, Cambridge, 1985. Initial and initial-boundary value problems. MR**832441****[10]**Kevin W. Thompson,*Time-dependent boundary conditions for hyperbolic systems*, J. Comput. Phys.**68**(1987), no. 1, 1–24. MR**887804**, 10.1016/0021-9991(87)90041-6**[11]**G. B. Whitham,*Linear and nonlinear waves*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0483954**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M99,
76N99

Retrieve articles in all journals with MSC: 65M99, 76N99

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1988-0935075-7

Article copyright:
© Copyright 1988
American Mathematical Society