Convergence of a higher-order vortex method for two-dimensional Euler equations

Authors:
C. Chiu and R. A. Nicolaides

Journal:
Math. Comp. **51** (1988), 507-534

MSC:
Primary 65N30; Secondary 76-08, 76C05

MathSciNet review:
935078

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There has been considerable interest recently in the convergence properties of point vortex methods. In this paper, we define a vortex method using vortex multipoles and obtain error estimates for it. In the case of a nonuniform mesh, the rate of convergence of the dipolar algorithm is shown to be of higher order of accuracy than obtained with the simple vortex methods.

**[1]**Christopher Anderson and Claude Greengard,*On vortex methods*, SIAM J. Numer. Anal.**22**(1985), no. 3, 413–440. MR**787568**, 10.1137/0722025**[2]**J. Thomas Beale and Andrew Majda,*Vortex methods. I. Convergence in three dimensions*, Math. Comp.**39**(1982), no. 159, 1–27. MR**658212**, 10.1090/S0025-5718-1982-0658212-5**[3]**J. Thomas Beale and Andrew Majda,*Vortex methods. II. Higher order accuracy in two and three dimensions*, Math. Comp.**39**(1982), no. 159, 29–52. MR**658213**, 10.1090/S0025-5718-1982-0658213-7**[4]**J. Thomas Beale and Andrew Majda,*Rates of convergence for viscous splitting of the Navier-Stokes equations*, Math. Comp.**37**(1981), no. 156, 243–259. MR**628693**, 10.1090/S0025-5718-1981-0628693-0**[5]**G. H. Cottet,*Méthodes Particulaires pour l'équation d'Euler dans le Plan*, Thèse de 3ème cycle, Université Paris VI, 1982.**[6]**Alexandre Joel Chorin,*Numerical study of slightly viscous flow*, J. Fluid Mech.**57**(1973), no. 4, 785–796. MR**0395483****[7]**A. J. Chorin and J. E. Marsden,*A mathematical introduction to fluid mechanics*, Springer-Verlag, New York-Heidelberg, 1979. MR**551053****[8]**S. Choudhury & R. A. Nicolaides, "Vortex multipole methods for viscous incompressible flows," 10*th International Conf. on Numerical Methods in Fluid Dynamics*(F. G. Zhuang and Y. L. Zhu, eds.), Lecture Notes in Phys., vol. 264, Springer-Verlag, Berlin, 1986.**[9]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[10]**Ole H. Hald,*Convergence of vortex methods for Euler’s equations. II*, SIAM J. Numer. Anal.**16**(1979), no. 5, 726–755. MR**543965**, 10.1137/0716055**[11]**Jack K. Hale,*Ordinary differential equations*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. Pure and Applied Mathematics, Vol. XXI. MR**0419901****[12]**F. H. Harlow, "The particle in cell computing method for fluid dynamics,"*Methods in Computational Physics*(B. Alder, S. Fernbach & M. Rotenberg, eds.), Vol. 3, Academic Press, New York, 1964.**[13]**R. W. Hockney & J. W. Eastwood,*Computer Simulation Using Particles*, McGraw-Hill, New York, 1981.**[14]**Tosio Kato,*Nonstationary flows of viscous and ideal fluids in 𝑅³*, J. Functional Analysis**9**(1972), 296–305. MR**0481652****[15]**A. Leonard,*Vortex methods for flow simulation*, J. Comput. Phys.**37**(1980), no. 3, 289–335. MR**588256**, 10.1016/0021-9991(80)90040-6**[16]**F. J. McGrath,*Nonstationary plane flow of viscous and ideal fluids*, Arch. Rational Mech. Anal.**27**(1967), 329–348. MR**0221818****[17]**R. A. Nicolaides,*Construction of higher order accurate vortex and particle methods*, Appl. Numer. Math.**2**(1986), no. 3-5, 313–320. MR**863990**, 10.1016/0168-9274(86)90036-X**[18]**P. A. Raviart, "An analysis of particle methods,"*Numerical Methods in Fluid Dynamics*, Como, July, 1983.**[19]**R. Temam,*Local existence of 𝐶^{∞} solutions of the Euler equations of incompressible perfect fluids*, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Springer, Berlin, 1976, pp. 184–194. Lecture Notes in Math., Vol. 565. MR**0467033**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76-08,
76C05

Retrieve articles in all journals with MSC: 65N30, 76-08, 76C05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0935078-2

Article copyright:
© Copyright 1988
American Mathematical Society