Convergence of a higher-order vortex method for two-dimensional Euler equations

Authors:
C. Chiu and R. A. Nicolaides

Journal:
Math. Comp. **51** (1988), 507-534

MSC:
Primary 65N30; Secondary 76-08, 76C05

DOI:
https://doi.org/10.1090/S0025-5718-1988-0935078-2

MathSciNet review:
935078

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There has been considerable interest recently in the convergence properties of point vortex methods. In this paper, we define a vortex method using vortex multipoles and obtain error estimates for it. In the case of a nonuniform mesh, the rate of convergence of the dipolar algorithm is shown to be of higher order of accuracy than obtained with the simple vortex methods.

**[1]**C. Anderson & C. Greengard, "On vortex methods,"*SIAM J. Numer. Anal.*, v. 22, 1985, pp. 413-440. MR**787568 (86j:76016)****[2]**J. T. Beale & A. Majda, "Vortex methods I: Convergence in three dimensions,"*Math. Comp.*, v. 39, 1982, pp. 1-27. MR**658212 (83i:65069a)****[3]**J. T. Beale & A. Majda, "Vortex methods II: Higher order accuracy in two and three dimensions,"*Math. Comp.*, v. 39, 1982, pp. 29-52. MR**658213 (83i:65069b)****[4]**J. T. Beale & A. Majda, "Rates of convergence for viscous splitting of the Navier-Stokes equations,"*Math. Comp.*, v. 37, 1981, pp. 243-259. MR**628693 (82i:65056)****[5]**G. H. Cottet,*Méthodes Particulaires pour l'équation d'Euler dans le Plan*, Thèse de 3ème cycle, Université Paris VI, 1982.**[6]**A. J. Chorin, "Numerical study of slightly viscous flow,"*J. Fluid Mech.*, v. 57, 1973, pp. 785-796. MR**0395483 (52:16280)****[7]**A. J. Chorin & J. Marsden,*A Mathematical Introduction to Fluid Mechanics*, Springer-Verlag, New York, 1979. MR**551053 (81m:76001)****[8]**S. Choudhury & R. A. Nicolaides, "Vortex multipole methods for viscous incompressible flows," 10*th International Conf. on Numerical Methods in Fluid Dynamics*(F. G. Zhuang and Y. L. Zhu, eds.), Lecture Notes in Phys., vol. 264, Springer-Verlag, Berlin, 1986.**[9]**P. G. Ciarlet,*The Finite Element Method for Elliptic Problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[10]**O. H. Hald, "Convergence of vortex methods for Euler's equations. II,"*SIAM J. Numer. Anal.*, v. 16, 1979, pp. 726-755. MR**543965 (81b:76015b)****[11]**J. K. Hale,*Ordinary Differential Equations*, Wiley Interscience, New York, 1969. MR**0419901 (54:7918)****[12]**F. H. Harlow, "The particle in cell computing method for fluid dynamics,"*Methods in Computational Physics*(B. Alder, S. Fernbach & M. Rotenberg, eds.), Vol. 3, Academic Press, New York, 1964.**[13]**R. W. Hockney & J. W. Eastwood,*Computer Simulation Using Particles*, McGraw-Hill, New York, 1981.**[14]**T. Kato, "Nonstationary flows of viscous and ideal fluids in ,"*J. Funct. Anal.*, v. 9, 1972, pp. 296-305. MR**0481652 (58:1753)****[15]**A. Leonard, "Vortex methods for flow simulations,"*J. Comput. Phys.*, v. 37, 1980, pp. 289-335. MR**588256 (81i:76016)****[16]**F. J. McGrath, "Nonstationary plane flow of viscous and ideal fluids,"*Arch. Rational Mech. Anal.*, v. 27, 1968, pp. 328-348. MR**0221818 (36:4870)****[17]**R. A. Nicolaides, "Construction of higher order accurate vortex and particle methods,"*Appl. Numer. Math.*, v. 2, 1986, pp. 313-320. MR**863990 (87k:65119)****[18]**P. A. Raviart, "An analysis of particle methods,"*Numerical Methods in Fluid Dynamics*, Como, July, 1983.**[19]**R.Temam, "Local existence of solutions of the Euler equations of incompressible perfect fluids,"*Turbulence and Navier-Stokes Equations*(R. Temam, ed.), Lecture Notes in Math., vol. 565, Springer-Verlag, Berlin, 1976. MR**0467033 (57:6902)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76-08,
76C05

Retrieve articles in all journals with MSC: 65N30, 76-08, 76C05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0935078-2

Article copyright:
© Copyright 1988
American Mathematical Society