On four-dimensional terminal quotient singularities

Authors:
Shigefumi Mori, David R. Morrison and Ian Morrison

Journal:
Math. Comp. **51** (1988), 769-786

MSC:
Primary 14J35; Secondary 14B05, 14J10

DOI:
https://doi.org/10.1090/S0025-5718-1988-0958643-5

MathSciNet review:
958643

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We report on an investigation of four-dimensional terminal cyclic quotient singularities which are not Gorenstein. (For simplicity, we focus on quotients by cyclic groups of prime order.) An enumeration, using a computer, of all such singularities for primes led us to conjecture a structure theorem for these singularities (which is rather more complicated than the known structure theorem in dimension three). We discuss this conjecture and our evidence for it; we also discuss properties of the anticanonical and antibicanonical linear systems of these singularities.

**[1]**V. I. Danilov,*Birational geometry of three-dimensional toric varieties*, Izv. Akad. Nauk SSSR Ser. Mat.**46**(1982), no. 5, 971–982, 1135 (Russian). MR**675526****[2]**M. A. Frumkin,*Description of the Elementary Three-Dimensional Polyhedra*, First All-Union Conference on Statistical and Discrete Analysis of Non-Numerical Information, Expert Estimation and Discrete Optimization (abstracts of conference reports), Moscow-Alma-Ata, 1981. (Russian)**[3]**Yujiro Kawamata,*Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces*, Ann. of Math. (2)**127**(1988), no. 1, 93–163. MR**924674**, https://doi.org/10.2307/1971417**[4]**J. Kollár and N. I. Shepherd-Barron,*Threefolds and deformations of surface singularities*, Invent. Math.**91**(1988), no. 2, 299–338. MR**922803**, https://doi.org/10.1007/BF01389370**[5]**S. V. Konyagin and D. G. Markushevich,*Criteria for canonicalness of cyclic quotients of regular and nondegenerate singular double points*, Sibirsk. Mat. Zh.**26**(1985), no. 4, 68–78, 204 (Russian). MR**804019****[6]**Shigefumi Mori,*On 3-dimensional terminal singularities*, Nagoya Math. J.**98**(1985), 43–66. MR**792770**, https://doi.org/10.1017/S0027763000021358**[7]**Shigefumi Mori,*Flip theorem and the existence of minimal models for 3-folds*, J. Amer. Math. Soc.**1**(1988), no. 1, 117–253. MR**924704**, https://doi.org/10.1090/S0894-0347-1988-0924704-X**[8]**David R. Morrison and Glenn Stevens,*Terminal quotient singularities in dimensions three and four*, Proc. Amer. Math. Soc.**90**(1984), no. 1, 15–20. MR**722406**, https://doi.org/10.1090/S0002-9939-1984-0722406-4**[9]**William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling,*Numerical recipes*, Cambridge University Press, Cambridge, 1986. The art of scientific computing. MR**833288****[10]**Miles Reid,*Canonical 3-folds*, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR**605348****[11]**Miles Reid,*Minimal models of canonical 3-folds*, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR**715649****[12]**Miles Reid,*Young person’s guide to canonical singularities*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR**927963**

Retrieve articles in *Mathematics of Computation*
with MSC:
14J35,
14B05,
14J10

Retrieve articles in all journals with MSC: 14J35, 14B05, 14J10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0958643-5

Article copyright:
© Copyright 1988
American Mathematical Society