Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of real quadratic fields with class number one


Authors: A. J. Stephens and H. C. Williams
Journal: Math. Comp. 51 (1988), 809-824
MSC: Primary 11R11; Secondary 11R29, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-1988-0958644-7
MathSciNet review: 958644
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A rapid method for determining whether the real quadratic field $ \mathcal{K} = \mathcal{Q}(\sqrt D )$ has class number one is described. The method makes use of the infrastructure idea of Shanks to determine the regulator of $ \mathcal{K}$ and then uses the Generalized Riemann Hypothesis to rapidly estimate $ L(1,\chi )$ to the accuracy needed for determining whether or not the class number of $ \mathcal{K}$ is one. The results of running this algorithm on a computer for all prime values of D up to $ {10^9}$ are also presented, together with further results on runs on intervals of size $ {10^7}$ starting at $ {10^i}\,(i = 9,10, \ldots ,16)$.


References [Enhancements On Off] (What's this?)

  • [1] H. Cohen & H. W. Lenstra, Jr., "Heuristics on class groups of number fields," Number Theory (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer-Verlag, Berlin and New York, 1984, pp. 33-62. MR 756082 (85j:11144)
  • [2] G. Cornell & L. C. Washington, "Class numbers of cyclotomic fields," J. Number Theory, v. 21, 1985, pp. 260-274. MR 814005 (87d:11079)
  • [3] H. W. Lenstra, Jr., "On the calculation of regulators and class numbers of quadratic fields," London Math. Soc. Lecture Note Ser., v. 56, 1982, pp. 123-150. MR 697260 (86g:11080)
  • [4] J. Oesterlé, "Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann généralisée," Astérisque, v. 61, 1979, pp. 165-167.
  • [5] R. J. Schoof, "Quadratic fields and factorization," Computational Methods in Number Theory (H. W. Lenstra, Jr. and R. Tijdemann, eds.), Math. Centrum Tracts, Number 155, Part II, Amsterdam, 1983, pp. 235-286. MR 702519 (85g:11118b)
  • [6] D. Shanks, "The infrastructure of a real quadratic field and its applications," Proc. 1972 Number Theory Conference (Univ. Colorado, Boulder, 1972), pp. 217-224, Univ. Colorado, Boulder, 1972. MR 0389842 (52:10672)
  • [7] A. J. Stephens & H. C. Williams, "Some computational results on a problem concerning powerful numbers," Math. Comp., v. 50, 1988, pp. 619-632. MR 929558 (89d:11091)
  • [8] A. J. Stephens & H. C. Williams, "Some computational results on a problem of Eisenstein," Proc. International Number Theory Conf., Laval University, Québec, 1987. (To appear.) MR 1024611 (91c:11066)
  • [9] M. Tennenhouse & H. C. Williams, "A note on class-number one in certain real quadratic and pure cubic fields," Math. Comp., v. 46, 1986, pp. 333-336. MR 815853 (87b:11127)
  • [10] H. C. Williams & J. Broere, "A computational technique for evaluating $ L(1,\chi )$ and the class number of a real quadratic field," Math. Comp., v. 30, 1976, pp. 887-893. MR 0414522 (54:2623)
  • [11] H. C. Williams & M. C. Wunderlich, "On the parallel generation of the residues for the continued fraction factoring algorithm," Math. Comp., v. 48, 1987, pp. 405-423. MR 866124 (88i:11099)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R11, 11R29, 11Y40

Retrieve articles in all journals with MSC: 11R11, 11R29, 11Y40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1988-0958644-7
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society