Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing


Author: M. I. Comodi
Journal: Math. Comp. 52 (1989), 17-29
MSC: Primary 65N30; Secondary 73C35
DOI: https://doi.org/10.1090/S0025-5718-1989-0946601-7
MathSciNet review: 946601
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze the behavior of the mixed Hellan-Herrmann-Johnson method for solving the biharmonic problem $ {\Delta ^2}\psi = f$. We show a superconvergence result for the distance between $ {\psi ^h}$ (the approximation of the displacement) and $ {P_h}\psi $ (where $ {P_h}$ is a suitable projection operator). If the discrete equations are solved (as is usually done) by using interelement Lagrange multipliers, our superconvergence result allows us to prove the convergence, in suitable norms, of the Lagrange multipliers to the normal derivative of the displacement, and to construct a new approximation of $ \nabla \psi $ which converges to $ \nabla \psi $ faster than $ \nabla {\psi ^h}$.


References [Enhancements On Off] (What's this?)

  • [1] R. Adams, Sobolev Spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] D. N. Arnold & F. Brezzi, "Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates," RAIRO Modél. Math. Anal. Numér., v. 19, 1985, 7-32. MR 813687 (87g:65126)
  • [3] I. Babuška, J. Osborn & J. Pitkäranta, "Analysis of mixed methods using mesh dependent norms," Math. Comp., v. 35, 1980, pp. 1039-1062. MR 583486 (81m:65166)
  • [4] J. H. Bramble & J. Xu, "A local post-processing technique for improving the accuracy in mixed finite element approximation," SIAM J. Numer. Anal. (To appear.) MR 1025087 (90m:65193)
  • [5] F. Brezzi, J. Douglas, Jr. & L. D. Marini, "Two families of mixed finite elements for second order elliptic problems," Numer. Math., v. 47, 1985, pp. 217-435. MR 799685 (87g:65133)
  • [6] F. Brezzi & M. Fortin, Mixed and Hybrid F.E.M. (To appear.)
  • [7] F. Brezzi & P. A. Raviart, "Mixed finite element methods for 4th order elliptic equations," in Topics in Numerical Analysis, Vol. III (J.J.H. Miller, ed.), Academic Press, London, 1977, pp. 33-56. MR 0657975 (58:31905)
  • [8] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [9] C. Chinosi, L. Della Croce, L. D. Marini, A. Quarteroni, G. Sacchi & T. Scapolla, Implementation of Some Non Standard Finite Element Method for Fourth Order Problems, Report 231 of I.A.N.-C.N.R., Pavia, 1979.
  • [10] M. I. Comodi, "Approximation of a bending plate problem with a boundary unilateral constraint," Numer. Math., v. 47, 1985, pp. 435-458. MR 808562 (86k:65109)
  • [11] J. Douglas, Jr. & J. E. Roberts, "Global estimates for mixed methods for second order elliptic equations," Math. Comp., v. 44, 1985, pp. 39-52. MR 771029 (86b:65122)
  • [12] B. Fraejis De Veubeke, "Displacement and equilibrium models in the finite element method," in Stress Analysis (O.C. Zienkiewicz and C. Holister, eds.), Wiley, New York, 1965.
  • [13] K. Hellan, Analysis of Elastic Plates in Flexure by a Simplified Finite Element Method, Acta Polytechnica Scandinavica, Ci 46, Trondheim, 1967.
  • [14] K. Herrmann, "Finite element bending analysis for plates," J. Eng. Mech. Div. ASCE, a3, EM5 93, 1967, pp. 49-83.
  • [15] L. Herrmann, A Bending Analysis for Plates, Proc. Conf. on Matrix Methods in Structural Mechanics, AFFDL-TR-66-88, 1965, pp. 577-604.
  • [16] C. Johnson, "On the convergence of a mixed finite element method for plate bending problems," Numer. Math., v. 21, 1973, pp. 43-62. MR 0388807 (52:9641)
  • [17] J. L. Lions & E. Magenes, Problèmes aux Limites non Homogènes et Applications, Tome I, Dunod, Paris, 1968.
  • [18] L. S. D. Morley, "The triangular equilibrium element in the solution of plate bending problems," Aero. Quart., v. 19, 1968, pp. 149-169.
  • [19] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague, 1967.
  • [20] T. Scapolla, "A mixed finite element method for the biharmonic problem," RAIRO Anal. Numér., v. 14, 1980, pp. 55-79. MR 566090 (81m:65178)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 73C35

Retrieve articles in all journals with MSC: 65N30, 73C35


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1989-0946601-7
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society