Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On quartic Thue equations with trivial solutions


Author: R. J. Stroeker
Journal: Math. Comp. 52 (1989), 175-187
MSC: Primary 11D25
DOI: https://doi.org/10.1090/S0025-5718-1989-0946605-4
MathSciNet review: 946605
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let K be a quartic number field with negative absolute discriminant and let $ {\mathbf{L}} = {\mathbf{Q}}(\sqrt d )$ be its real quadratic subfield, with $ d \equiv 3\;\pmod 4$. Moreover, assume K to be embedded in the reals. Further, let $ \xi > 1$ generate the subgroup of units relative to L in the group of positive units of K. Under certain conditions, which can be explicitly checked, and for suitable linear forms $ X(u,v)$ and $ Y(u,v)$ with coefficients in $ {\mathbf{Z}}[\sqrt d ]$, the diophantine equation

$\displaystyle {\text{Norm}_{{\mathbf{K}}/{\mathbf{Q}}}}(X(u,v) + Y(u,v){\xi ^2}) = 1,$

which is a quartic Thue equation in the indeterminates u and v, has only trivial solutions, that is, solutions given by $ XY = 0$.

Information on a substantial number of equations of this type and their associated number fields is incorporated in a few tables.


References [Enhancements On Off] (What's this?)

  • [1] A. Baker, "Contributions to the theory of diophantine equations I: On the representation of integers by binary forms, II: The diophantine equation $ {y^2} = {x^3} + k$," Philos. Trans. Roy. Soc. London. Ser A, v. 263, 1968, pp. 173-208. MR 0228424 (37:4005)
  • [2] A. Baker & H. Davenport, "The equations $ 3{x^2} - 2 = {y^2}$ and $ 8{x^2} - 7 = {z^2}$," Quart. J. Math. Oxford Ser. (2), v. 20, 1969, pp. 129-137. MR 0248079 (40:1333)
  • [3] A. Bremner, "A diophantine equation arising from tight 4-designs," Osaka J. Math., v. 16, 1979, pp. 353-356. MR 539591 (80j:10026)
  • [4] L. Holtzer, Zahlentheorie, Teil I, Math. Naturw. Bibl. 13, Teubner Verlag, Leipzig, 1958.
  • [5] H. London & R. Finkelstein, "On Mordell's equation $ {y^2} - k = {x^3}$," Bowling Green State Univ. Press, 1973. MR 0340172 (49:4928)
  • [6] L. J. Mordell, Diophantine Equations, Pure and Appl. Math., vol. 30, Academic Press, New York, 1969. MR 0249355 (40:2600)
  • [7] Trygve Nagell, "Sur quelques questions dans la théorie des corps biquadratiques," Ark. Mat., v. 4, 1962, pp. 347-376. MR 0150124 (27:127)
  • [8] Ken Nakamula, "Class number calculation and elliptic unit II," Proc. Japan Acad., v. 57A, 1981, pp. 117-120. MR 605295 (82k:12007b)
  • [9] Ken Nakamula, "Class number calculation of a quartic field from the elliptic unit," Acta Arith., v. 45, 1985, pp. 215-227. MR 808022 (87a:11109)
  • [10] R. J. Stroeker, "On the diophantine equation $ {(2{y^2} - 3)^2} = {x^2}(3{x^2} - 2)$ in connection with the existence of non-trivial tight 4-designs," Indag. Math., v. 43, 1981, pp. 353-358. MR 632174 (82j:10032)
  • [11] R. J. Stroeker, "On classes of biquadratic diophantine equations with trivial solutions only," Abstracts Amer. Math. Soc., v. 35, 1984, p. 441.
  • [12] R. J. Stroeker & R. Tijdeman, "Diophantine equations," in Computational Methods in Number Theory, Part II, MC Tracts 155, Centre Math. Comp. Sci., Amsterdam, 1982, pp. 321-369. MR 702521 (84i:10014)
  • [13] R. J. Stroeker & N. Tzanakis, "On the application of Skolem's p-adic method to the solution of Thue equations," J. Number Theory, v. 29, 1988, pp. 166-195. MR 945593 (89f:11044)
  • [14] A. Thue, "Über Annäherungswerte algebraischer Zahlen," J. Reine Angew. Math., v. 135, 1909, pp. 284-305.
  • [15] Nikos Tzanakis, "On the diophantine equation $ {x^2} - D{y^4} = k$," Acta Arith., v. 46, 1986, pp. 257-269.
  • [16] N. Tzanakis & B. M. M. de Weger, On the Practical Solution of the Thue Equation, Memorandum 668, Fac. Appl. Math. Un. of Twente, 1987.
  • [17] Saburô Uchiyama, "Solution of a diophantine problem," Tsukuba J. Math., v. 8, 1984, pp. 131-157. MR 747452 (86i:11010)
  • [18] Theresa P. Vaughan, "The discriminant of a quadratic extension of an algebraic field," Math. Comp., v. 40, 1983, pp. 685-707. MR 689482 (84e:12006)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11D25

Retrieve articles in all journals with MSC: 11D25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1989-0946605-4
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society