Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Superconvergence for multistep collocation


Authors: Ivar Lie and Syvert P. Nørsett
Journal: Math. Comp. 52 (1989), 65-79
MSC: Primary 65L05
MathSciNet review: 971403
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: One-step collocation methods are known to be a subclass of implicit Runge-Kutta methods. Further, one-leg methods are special multistep one-point collocation methods. In this paper we extend both of these collocation ideas to multistep collocation methods with k previous meshpoints and m collocation points. By construction, the order is at least $ m + k - 1$. However, by choosing the collocation points in the right way, order $ 2m + k - 1$ is obtained as the maximum. There are $ \left( {\begin{array}{*{20}{c}} {m + k - 1} \\ {k - 1} \\ \end{array} } \right)$ sets of such "multistep Gaussian" collocation points.


References [Enhancements On Off] (What's this?)

  • [1] K. Burrage, The Order Properties of Implicit Multivalue Methods for Ordinary Differential Equations, Report 176/84, Dept. of Computer Science, University of Toronto, Toronto, Canada.
  • [2] K. Burrage, "High order algebraically stable multistep Runge-Kutta methods." Manuscript, 1985.
  • [3] Kevin Burrage and Pamela Moss, Simplifying assumptions for the order of partitioned multivalue methods, BIT 20 (1980), no. 4, 452–465. MR 605903, 10.1007/BF01933639
  • [4] G. Dahlquist, Some Properties of Linear Multistep Methods and One-Leg Methods for Ordinary Differential Equations, Report TRITA-NA-7904, KTH, Stockholm, 1979.
  • [5] Germund Dahlquist, On one-leg multistep methods, SIAM J. Numer. Anal. 20 (1983), no. 6, 1130–1138. MR 723829, 10.1137/0720082
  • [6] A. Guillou and J. L. Soulé, La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation, Rev. Française Informat. Recherche Opérationnelle 3 (1969), no. Ser. R-3, 17–44 (French). MR 0280008
  • [7] Vladimir Ivanovich Krylov, Approximate calculation of integrals, Translated by Arthur H. Stroud, The Macmillan Co., New York-London, 1962, 1962. MR 0144464
  • [8] I. Lie, k-Step Collocations with One Collocation Point and Derivative Data, FFI/NOTAT83/7109, NDRE, Kjeller, Norway, 1983.
  • [9] I. Lie, Multistep Collocation for Stiff Systems, Ph.D. thesis, Norwegian Institute of Technology, Dept. of Numerical Mathematics, Trondheim, 1985.
  • [10] H. Munthe-Kaas, On the Number of Gaussian Points for Multistep Collocation, Technical report, University of Trondheim, Dept. of Numerical Mathematics, 1986.
  • [11] Syvert P. Nørsett, Runge-Kutta methods with a multiple real eigenvalue only, Nordisk Tidskr. Informationsbehandling (BIT) 16 (1976), no. 4, 388–393. MR 0440928
  • [12] Syvert P. Nørsett, Collocation and perturbed collocation methods, Numerical analysis (Proc. 8th Biennial Conf., Univ. Dundee, Dundee, 1979), Lecture Notes in Math., vol. 773, Springer, Berlin, 1980, pp. 119–132. MR 569466
  • [13] S. P. Nørsett and G. Wanner, The real-pole sandwich for rational approximations and oscillation equations, BIT 19 (1979), no. 1, 79–94. MR 530118, 10.1007/BF01931224
  • [14] S. P. Nørsett and G. Wanner, Perturbed collocation and Runge-Kutta methods, Numer. Math. 38 (1981/82), no. 2, 193–208. MR 638444, 10.1007/BF01397089
  • [15] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York-London, 1970. MR 0273810
  • [16] Marino Zennaro, One-step collocation: uniform superconvergence, predictor-corrector method, local error estimate, SIAM J. Numer. Anal. 22 (1985), no. 6, 1135–1152. MR 811188, 10.1137/0722068

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L05

Retrieve articles in all journals with MSC: 65L05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1989-0971403-5
Article copyright: © Copyright 1989 American Mathematical Society