Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Polynomial approximation of divergence-free functions


Authors: Giovanni Sacchi Landriani and Hervé Vandeven
Journal: Math. Comp. 52 (1989), 103-130
MSC: Primary 65D15; Secondary 41A10, 65N35
DOI: https://doi.org/10.1090/S0025-5718-1989-0971405-9
MathSciNet review: 971405
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the best approximation of a divergence-free function by a divergence-free algebraic or trigonometric polynomial and we prove an optimal estimate. In a particular case we give also an optimal result for the polynomial approximation of a function and its divergence.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] A. Avantaggiati, "Spazi di Sobolev con peso ed alcune applicazioni," Boll. Un. Mat. Ital., v. 5, 1976, pp. 1-52. MR 0423064 (54:11047)
  • [3] I. Babuška, B. A. Szabo & I. N. Katz, The p-Version of the Finite Element Method, Report of the Washington University, St. Louis, 1979.
  • [4] J. Bergh & J. Lofstorm, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin and New York, 1976. MR 0482275 (58:2349)
  • [5] C. Bernardi, C. Canuto & Y. Maday, "Generalized inf-sup condition for Chebyshev approximation of the Navier-Stokes equations," SIAM J. Numer. Anal., v. 25, 1988. MR 972452 (90e:65151)
  • [6] C. Bernardi & Y. Maday, "Properties of some weighted Sobolev spaces, An application to spectral approximation," SIAM J. Numer. Anal. (To appear.) MR 1005511 (91c:46046)
  • [7] C. Bernardi, Y. Maday & B. Métivet, "Spectral approximation of the periodic nonperiodic Navier-Stokes equations," Numer. Math., v. 51, 1987, pp. 655-700. MR 914344 (89f:65118)
  • [8] C. Bernardi, Y. Maday & B. Métivet, "Calcul de la pression dans la résolution spectrale du problème de Stokes," Rech. Aérospat., v. 1, 1986, pp. 1-21.
  • [9] C. Canuto & A. Quarteroni, "Spectral and pseudo-spectral methods for parabolic problems with nonperiodic boundary conditions," Calcolo, v. 18, 1981, pp. 197-218. MR 647825 (84h:35132)
  • [10] C. Canuto & A. Quarteroni, "Approximation results for orthogonal polynomials in Sobolev spaces," Math. Comp., v. 38, 1982, pp. 67-86. MR 637287 (82m:41003)
  • [11] C. Canuto & G. Sacchi Landriani, "Analysis of the Kleiser-Schumann method," Numer. Math., v. 50, 1986, pp. 217-243. MR 866138 (88f:65191)
  • [12] P. Grisvard, "Espaces intermédiaires de Sobolev avec poids," Ann. Scuola Norm. Sup. Pisa, v. 17, 1963, pp. 255-296. MR 0160104 (28:3318)
  • [13] L. Kleiser & U. Schumann, "Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flows," in Proc. Third GAMM Conf. on Numer. Methods in Fluid Mech. (E. H. Hirschel, ed.), Vieweg (Braunschweig), 1980, pp. 165-173.
  • [14] H.-O. Kreiss & J. Oliger, "Stability of the Fourier method," SIAM J. Numer. Anal., v. 16, 1979, pp. 421-433. MR 530479 (80i:65130)
  • [15] J. L. Lions & E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Vols. 1 and 2, Springer-Verlag, Berlin and New York, 1972.
  • [16] N. Mac Giolla Mhuiris, The Construction and Use of Divergence-Free Vector Expansions for Incompressible Fluid Flow Calculation, ICASE Report no. 86-20, 1986.
  • [17] Y. Maday, "Analysis of spectral projectors in one-dimensional domains," Math. Comp. (To appear.) MR 1035939 (91c:41095)
  • [18] Y. Maday, "Analysis of spectral projectors in multi-dimensional domains," submitted for publication.
  • [19] Y. Maday & B. Métivet, "Chebyshev spectral approximation of Navier-Stokes equations in a two-dimensional domain," $ {M^2}AN$, v. 21, 1987, pp. 93-123. MR 882688 (88j:65222)
  • [20] Y. Maday & A. Quarteroni, "Legendre and Chebyshev spectral approximations of Burgers' equation," Numer. Math., v. 37, 1981, pp. 321-332. MR 627106 (83c:65246)
  • [21] R. D. Moser, P. Moin & A. Leonard, "A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow," J. Comput. Phys., v. 52, 1983, pp. 524-544. MR 727383 (84m:76015)
  • [22] J. Pasciak, "Spectral and pseudospectral methods for advection equations," Math. Comp., v. 35, 1980, pp. 1081-1092. MR 583488 (81i:65073)
  • [23] F. Pasquarelli, A. Quarteroni & G. Sacchi Landriani, "Spectral approximations of the Stokes problem by divergence-free functions," J. Sci. Comput., v. 2, 1987, pp. 195-226. MR 939911 (89k:76035)
  • [24] G. Sacchi Landriani, "Convergence of the Kleiser-Schumann method for Navier-Stokes equations," Calcolo, v. 23, 1986, pp. 383-406. MR 945782 (89h:65162)
  • [25] G. Sacchi Landriani, "Spectral tau approximation of the two-dimensional Stokes problem," Numer. Math., v. 52, 1988, pp. 683-699. MR 946383 (90a:76027)
  • [26] G. Sacchi Landriani & H. Vandeven, "Approximation polynômiale de fonctions à divergence nulle," C. R. Acad. Sci. Paris Sér. I, v. 304, no. 3, 1987. MR 878833 (88c:41016)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D15, 41A10, 65N35

Retrieve articles in all journals with MSC: 65D15, 41A10, 65N35


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1989-0971405-9
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society