On the lcm of the differences of eight primes

Author:
François Morain

Journal:
Math. Comp. **52** (1989), 225-229

MSC:
Primary 11A41; Secondary 11A07, 11Y05

Corrigendum:
Math. Comp. **54** (1990), 911.

Corrigendum:
Math. Comp. **54** (1990), 911.

MathSciNet review:
971409

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Following C. A. Spiro, who has found eight primes for which

**[1]**Egon Balas and Chang Sung Yu,*Finding a maximum clique in an arbitrary graph*, SIAM J. Comput.**15**(1986), no. 4, 1054–1068. MR**861370**, 10.1137/0215075**[2]**G. H. Hardy and J. E. Littlewood,*Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes*, Acta Math.**44**(1923), no. 1, 1–70. MR**1555183**, 10.1007/BF02403921**[3]**D. R. Heath-Brown,*The divisor function at consecutive integers*, Mathematika**31**(1984), no. 1, 141–149. MR**762186**, 10.1112/S0025579300010743**[4]**Donald E. Knuth,*The art of computer programming*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**0378456****[5]**Ian Richards,*On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem*, Bull. Amer. Math. Soc.**80**(1974), 419–438. MR**0337832**, 10.1090/S0002-9904-1974-13434-8**[6]**C. A. Spiro,*The Frequency with Which an Integral-Valued, Prime-Independent, Multiplicative or Additive Function of n Divides a Polynomial Function of n*, Ph. D. Thesis, University of Illinois, Urbana-Champaign, 1981.

Retrieve articles in *Mathematics of Computation*
with MSC:
11A41,
11A07,
11Y05

Retrieve articles in all journals with MSC: 11A41, 11A07, 11Y05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0971409-6

Article copyright:
© Copyright 1989
American Mathematical Society