Nonlinear filters for efficient shock computation

Authors:
Björn Engquist, Per Lötstedt and Björn Sjögreen

Journal:
Math. Comp. **52** (1989), 509-537

MSC:
Primary 65M05; Secondary 35L65

MathSciNet review:
955750

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new type of methods for the numerical approximation of hyperbolic conservation laws with discontinuous solution is introduced. The methods are based on standard finite difference schemes. The difference solution is processed with a nonlinear conservation form filter at every time level to eliminate spurious oscillations near shocks. It is proved that the filter can control the total variation of the solution and also produce sharp discrete shocks. The method is simpler and faster than many other high resolution schemes for shock calculations. Numerical examples in one and two space dimensions are presented.

**[1]**Phillip Colella,*Glimm’s method for gas dynamics*, SIAM J. Sci. Statist. Comput.**3**(1982), no. 1, 76–110. MR**651869**, 10.1137/0903007**[2]**David Gottlieb,*Spectral methods for compressible flow problems*, Ninth international conference on numerical methods in fluid dynamics (Saclay, 1984) Lecture Notes in Phys., vol. 218, Springer, Berlin, 1985, pp. 48–61. MR**793590**, 10.1007/3-540-13917-6_109**[3]**Ami Harten,*High resolution schemes for hyperbolic conservation laws*, J. Comput. Phys.**49**(1983), no. 3, 357–393. MR**701178**, 10.1016/0021-9991(83)90136-5**[4]**A. Harten & G. Zwas, "Switched numerical Shuman filters for shock calculations,"*J. Engrg. Math.*, v. 6, 1972, pp. 207-216.**[5]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774****[6]**Stanley Osher and Sukumar Chakravarthy,*High resolution schemes and the entropy condition*, SIAM J. Numer. Anal.**21**(1984), no. 5, 955–984. MR**760626**, 10.1137/0721060**[7]**Ami Harten, Stanley Osher, Björn Engquist, and Sukumar R. Chakravarthy,*Some results on uniformly high-order accurate essentially nonoscillatory schemes*, Appl. Numer. Math.**2**(1986), no. 3-5, 347–377. MR**863993**, 10.1016/0168-9274(86)90039-5**[8]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[9]**A. Rizzi & L.-E. Eriksson, "Computation of flow around wings based on the Euler equations,"*J. Fluid Mech.*, v. 148, 1984, p. 45-71.**[10]**P. L. Roe,*Approximate Riemann solvers, parameter vectors, and difference schemes*, J. Comput. Phys.**43**(1981), no. 2, 357–372. MR**640362**, 10.1016/0021-9991(81)90128-5**[11]**Gary A. Sod,*A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws*, J. Computational Phys.**27**(1978), no. 1, 1–31. MR**0495002****[12]**B. Van Leer, "Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method,"*J. Comput. Phys.*, v. 32, 1979, 101-136.**[13]**Paul Woodward and Phillip Colella,*The numerical simulation of two-dimensional fluid flow with strong shocks*, J. Comput. Phys.**54**(1984), no. 1, 115–173. MR**748569**, 10.1016/0021-9991(84)90142-6

Retrieve articles in *Mathematics of Computation*
with MSC:
65M05,
35L65

Retrieve articles in all journals with MSC: 65M05, 35L65

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0955750-9

Article copyright:
© Copyright 1989
American Mathematical Society