Nonconforming finite elements for the Stokes problem

Authors:
Michel Crouzeix and Richard S. Falk

Journal:
Math. Comp. **52** (1989), 437-456

MSC:
Primary 65N30; Secondary 76-08, 76D07

DOI:
https://doi.org/10.1090/S0025-5718-1989-0958870-8

MathSciNet review:
958870

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new stability result is obtained for the approximation of the stationary Stokes problem by nonconforming piecewise cubic approximations to the velocities and a discontinuous piecewise quadratic approximation to the pressure. The basic result is that for most reasonable meshes, these elements form a stable pair without the addition of quartic bubble functions (which had previously been added to insure stability).

**[1]**C. Bernardi & G. Raugel, "Analysis of some finite elements for the Stokes problem,"*Math. Comp.*, v. 44, 1985, pp. 71-79. MR**771031 (86b:65119)****[2]**J. Boland & R. Nicolaides, "Stability of finite elements under divergence constraints,"*SIAM J. Numer. Anal.*, v. 20, 1983, pp. 722-731. MR**708453 (85e:65046)****[3]**F. Brezzi, "On the existence, uniqueness, and the approximation of saddle point problems arising from Lagrangian multipliers,"*RAIRO Anal. Numér.*, v. 8, 1974, pp. 129-151. MR**0365287 (51:1540)****[4]**M. Crouzeix & P.-A. Raviart, "Conforming and non-conforming finite element methods for solving the stationary Stokes equations,"*RAIRO Anal. Numér.*, v. 7, 1973, pp. 33-76. MR**0343661 (49:8401)****[5]**M. Fortin,*Calcul Numérique des Écoulements des Fluides de Bingham et des Fluides Newtoniens Incompressibles par la Méthode des Éléments Finis*, Thèse Univ. Paris, 1972.**[6]**M. Fortin, "Old and new finite elements for incompressible flows,"*Internat. J. Numer. Methods Fluids*, v. 1, 1981, pp. 347-364. MR**633812 (83a:76015)****[7]**M. Fortin, "A non-conforming piecewise quadratic finite element on triangles,"*Internat. J. Numer. Methods Engrg.*, v. 19, 1983, pp. 505-520. MR**702056 (84g:76004)****[8]**V. Girault & P.-A. Raviart,*Finite Element Methods for Navier-Stokes Equations*, Springer-Verlag, Berlin, 1986. MR**851383 (88b:65129)****[9]**P.-A. Raviart & J. M. Thomas, "Primal hybrid finite element methods for 2nd order elliptic equations," Math. Comp., v. 31, 1977, pp. 391-413. MR**0431752 (55:4747)****[10]**L. R. Scott & M. Vogelius, "Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials,"*Math. Modelling and Numer. Anal.*, v. 19, 1985, pp. 111-143. MR**813691 (87i:65190)****[11]**R. Stenberg, "Analysis of mixed finite element methods for the Stokes problem: A unified approach,"*Math. Comp.*, v. 42, 1984, pp. 9-23. MR**725982 (84k:76014)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76-08,
76D07

Retrieve articles in all journals with MSC: 65N30, 76-08, 76D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0958870-8

Keywords:
Stokes,
finite element,
nonconforming

Article copyright:
© Copyright 1989
American Mathematical Society