An absolutely stabilized finite element method for the Stokes problem

Authors:
Jim Douglas and Jun Ping Wang

Journal:
Math. Comp. **52** (1989), 495-508

MSC:
Primary 65N30; Secondary 76-08, 76D07

MathSciNet review:
958871

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An absolutely stabilized finite element formulation for the Stokes problem is presented in this paper. This new formulation, which is nonsymmetric but stable without employment of any stability constant, can be regarded as a modification of the formulation proposed recently by Hughes and Franca in [8]. Optimal error estimates in -norm for the new stabilized finite element approximation of both the velocity and the pressure fields are established, as well as one in -norm for the velocity field.

**[1]**Ivo Babuška,*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1972/73), 179–192. MR**0359352****[2]**F. Brezzi,*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 129–151 (English, with loose French summary). MR**0365287****[3]**Franco Brezzi and Jim Douglas Jr.,*Stabilized mixed methods for the Stokes problem*, Numer. Math.**53**(1988), no. 1-2, 225–235. MR**946377**, 10.1007/BF01395886**[4]**F. Brezzi and J. Pitkäranta,*On the stabilization of finite element approximations of the Stokes equations*, Efficient solutions of elliptic systems (Kiel, 1984) Notes Numer. Fluid Mech., vol. 10, Friedr. Vieweg, Braunschweig, 1984, pp. 11–19. MR**804083****[5]**R. S. Falk and J. E. Osborn,*Error estimates for mixed methods*, RAIRO Anal. Numér.**14**(1980), no. 3, 249–277 (English, with French summary). MR**592753****[6]**Vivette Girault and Pierre-Arnaud Raviart,*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383****[7]**Thomas J. R. Hughes, Leopoldo P. Franca, and Marc Balestra,*A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations*, Comput. Methods Appl. Mech. Engrg.**59**(1986), no. 1, 85–99. MR**868143**, 10.1016/0045-7825(86)90025-3**[8]**Thomas J. R. Hughes and Leopoldo P. Franca,*A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces*, Comput. Methods Appl. Mech. Engrg.**65**(1987), no. 1, 85–96. MR**914609**, 10.1016/0045-7825(87)90184-8**[9]**R. B. Kellogg and J. E. Osborn,*A regularity result for the Stokes problem in a convex polygon*, J. Functional Analysis**21**(1976), no. 4, 397–431. MR**0404849**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76-08,
76D07

Retrieve articles in all journals with MSC: 65N30, 76-08, 76D07

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1989-0958871-X

Keywords:
Stokes equation,
finite element method

Article copyright:
© Copyright 1989
American Mathematical Society