Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data

Authors:
James H. Bramble, Joseph E. Pasciak, Peter H. Sammon and Vidar Thomée

Journal:
Math. Comp. **52** (1989), 339-367

MSC:
Primary 65N10; Secondary 65N20

DOI:
https://doi.org/10.1090/S0025-5718-1989-0962207-8

MathSciNet review:
962207

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Backward difference methods for the discretization of parabolic boundary value problems are considered in this paper. In particular, we analyze the case when the backward difference equations are only solved 'approximately' by a preconditioned iteration. We provide an analysis which shows that these methods remain stable and accurate if a suitable number of iterations (often independent of the spatial discretization and time step size) are used. Results are provided for the smooth as well as non-smooth initial data cases. Finally, the results of numerical experiments illustrating the algorithms' performance on model problems are given.

**[1]**Garth A. Baker, James H. Bramble, and Vidar Thomée,*Single step Galerkin approximations for parabolic problems*, Math. Comp.**31**(1977), no. 140, 818–847. MR**0448947**, https://doi.org/10.1090/S0025-5718-1977-0448947-X**[2]**James H. Bramble,*Discrete methods for parabolic equations with time-dependent coefficients*, Numerical methods for partial differential equations (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 42, Academic Press, New York-London, 1979, pp. 41–52. MR**558215****[3]**J. H. Bramble, R. E. Ewing, J. E. Pasciak & A. H. Schatz, "A preconditioning technique for the efficient solution of problems with local grid refinement,"*Comput. Methods Appl. Mech. Engrg.*, v. 67, 1988, pp. 149-159.**[4]**James H. Bramble and Joseph E. Pasciak,*New convergence estimates for multigrid algorithms*, Math. Comp.**49**(1987), no. 180, 311–329. MR**906174**, https://doi.org/10.1090/S0025-5718-1987-0906174-X**[5]**J. H. Bramble, J. E. Pasciak, and A. H. Schatz,*An iterative method for elliptic problems on regions partitioned into substructures*, Math. Comp.**46**(1986), no. 174, 361–369. MR**829613**, https://doi.org/10.1090/S0025-5718-1986-0829613-0**[6]**J. H. Bramble, J. E. Pasciak, and A. H. Schatz,*The construction of preconditioners for elliptic problems by substructuring. I*, Math. Comp.**47**(1986), no. 175, 103–134. MR**842125**, https://doi.org/10.1090/S0025-5718-1986-0842125-3**[7]**J. H. Bramble, J. E. Pasciak, and A. H. Schatz,*The construction of preconditioners for elliptic problems by substructuring. II*, Math. Comp.**49**(1987), no. 179, 1–16. MR**890250**, https://doi.org/10.1090/S0025-5718-1987-0890250-4**[8]**James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz,*The construction of preconditioners for elliptic problems by substructuring. III*, Math. Comp.**51**(1988), no. 184, 415–430. MR**935071**, https://doi.org/10.1090/S0025-5718-1988-0935071-X**[9]**James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz,*The construction of preconditioners for elliptic problems by substructuring. IV*, Math. Comp.**53**(1989), no. 187, 1–24. MR**970699**, https://doi.org/10.1090/S0025-5718-1989-0970699-3**[10]**James H. Bramble and Peter H. Sammon,*Efficient higher order single step methods for parabolic problems. I*, Math. Comp.**35**(1980), no. 151, 655–677. MR**572848**, https://doi.org/10.1090/S0025-5718-1980-0572848-X**[11]**J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin,*Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations*, SIAM J. Numer. Anal.**14**(1977), no. 2, 218–241. MR**0448926**, https://doi.org/10.1137/0714015**[12]**James H. Bramble and Vidar Thomée,*Discrete time Galerkin methods for a parabolic boundary value problem*, Ann. Mat. Pura Appl. (4)**101**(1974), 115–152. MR**0388805**, https://doi.org/10.1007/BF02417101**[13]**R. Chandra,*Conjugate Gradient Methods for Partial Differential Equations*, Yale University, Dept. of Comp. Sci. Rep. No. 129, 1978.**[14]**M. Crouzeix and P.-A. Raviart,*Approximation d’équations d’évolution linéaires par des méthodes multipas*, Étude numérique des grands systèmes (Proc. Sympos., Novosibirsk, 1976), Méthodes Math. Inform., vol. 7, Dunod, Paris, 1978, pp. 133–150 (French). MR**517853****[15]**Colin W. Cryer,*On the instability of high order backward-difference multistep methods*, Nordisk Tidskr. Informations behandling (BIT)**12**(1972), 17–25. MR**0311112****[16]**Jim Douglas Jr., Todd Dupont, and Richard E. Ewing,*Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem*, SIAM J. Numer. Anal.**16**(1979), no. 3, 503–522. MR**530483**, https://doi.org/10.1137/0716039**[17]**Todd Dupont, Richard P. Kendall, and H. H. Rachford Jr.,*An approximate factorization procedure for solving self-adjoint elliptic difference equations*, SIAM J. Numer. Anal.**5**(1968), 559–573. MR**0235748**, https://doi.org/10.1137/0705045**[18]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[19]**F. B. Hildebrand,*Introduction to numerical analysis*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. MR**0075670****[20]**Stephen L. Keeling,*Galerkin/Runge-Kutta discretizations for parabolic equations with time-dependent coefficients*, Math. Comp.**52**(1989), no. 186, 561–586. MR**958873**, https://doi.org/10.1090/S0025-5718-1989-0958873-3**[21]**Marie-Noëlle Le Roux,*Semidiscretization in time for parabolic problems*, Math. Comp.**33**(1979), no. 147, 919–931. MR**528047**, https://doi.org/10.1090/S0025-5718-1979-0528047-2**[22]**J. L. Lions & E. Magenes,*Problèmes aux Limites non Homogènes et Applications*, Dunod, Paris, 1968.**[23]**W. M. Patterson, 3rd,*Iterative Methods for the Solution of a Linear Operator Equation in Hilbert Space--A Survey*, Lecture Notes in Math., vol. 394, Springer-Verlag, New York, 1974.**[24]**V. Thomée,*Galerkin Finite Element Methods for Parabolic Problems*, Lecture Notes in Math., vol. 1054, Springer-Verlag, New York, 1984.**[25]**Harry Yserentant,*On the multilevel splitting of finite element spaces*, Numer. Math.**49**(1986), no. 4, 379–412. MR**853662**, https://doi.org/10.1007/BF01389538

Harry Yserentant,*Erratum: “On the multilevel splitting of finite element spaces”*, Numer. Math.**50**(1986), no. 1, 123. MR**864309**, https://doi.org/10.1007/BF01389672**[26]**Miloš Zlámal,*Finite element multistep discretizations of parabolic boundary value problems*, Math. Comp.**29**(1975), 350–359. MR**0371105**, https://doi.org/10.1090/S0025-5718-1975-0371105-2

Retrieve articles in *Mathematics of Computation*
with MSC:
65N10,
65N20

Retrieve articles in all journals with MSC: 65N10, 65N20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0962207-8

Article copyright:
© Copyright 1989
American Mathematical Society