A new lower bound for odd perfect numbers

Authors:
Richard P. Brent and Graeme L. Cohen

Journal:
Math. Comp. **53** (1989), 431-437, S7

MSC:
Primary 11A25; Secondary 11Y05, 11Y70

DOI:
https://doi.org/10.1090/S0025-5718-1989-0968150-2

MathSciNet review:
968150

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe an algorithm for proving that there is no odd perfect number less than a given bound *K* (or finding such a number if one exists). A program implementing the algorithm has been run successfully with , with an elliptic curve method used for the vast number of factorizations required.

**[1]**Walter E. Beck and Rudolph M. Najar,*A lower bound for odd triperfects*, Math. Comp.**38**(1982), no. 157, 249–251. MR**637303**, https://doi.org/10.1090/S0025-5718-1982-0637303-9**[2]**R. P. Brent, "Some integer factorization algorithms using elliptic curves,"*Australian Computer Science Communications*, v. 8, 1986, pp. 149-163.**[3]**R. P. Brent, G. L. Cohen & H. J. J. te Riele,*An Improved Technique for Lower Bounds for Odd Perfect Numbers*, Report TR-CS-88-08, Computer Sciences Laboratory, Australian National University, August 1988.**[4]**John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr.,*Factorizations of 𝑏ⁿ±1*, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. 𝑏=2,3,5,6,7,10,11,12 up to high powers. MR**715603****[5]**M. Buxton & S. Elmore, "An extension of lower bounds for odd perfect numbers,"*Notices Amer. Math. Soc.*, v. 23, 1976, p. A-55.**[6]**M. Buxton & B. Stubblefield, "On odd perfect numbers,"*Notices Amer. Math. Soc.*, v. 22, 1975, p. A-543.**[7]**Graeme L. Cohen and Peter Hagis Jr.,*Results concerning odd multiperfect numbers*, Bull. Malaysian Math. Soc. (2)**8**(1985), no. 1, 23–26. MR**810051****[8]**Richard K. Guy,*Unsolved problems in number theory*, Unsolved Problems in Intuitive Mathematics, vol. 1, Springer-Verlag, New York-Berlin, 1981. Problem Books in Mathematics. MR**656313****[9]**Peter Hagis Jr.,*A lower bound for the set of odd perfect numbers*, Math. Comp.**27**(1973), 951–953. MR**0325507**, https://doi.org/10.1090/S0025-5718-1973-0325507-9**[10]**Hans-Joachim Kanold,*Über mehrfach vollkommene Zahlen. II*, J. Reine Angew. Math.**197**(1957), 82–96 (German). MR**0084514**, https://doi.org/10.1515/crll.1957.197.82**[11]**T. Nagell,*Introduction to Number Theory*, Chelsea, New York, 1981.**[12]**B. M. Stewart,*Math. Rev.*,**81m**:10011.**[13]**Beauregard Stubblefield,*Lower bounds for odd perfect numbers (beyond the googol)*, Black mathematicians and their works, Dorrance, Ardmore, Pa., 1980, pp. 211–222 (1 plate). MR**573929****[14]**Bryant Tuckerman,*A search procedure and lower bound for odd perfect numbers*, Math. Comp.**27**(1973), 943–949. MR**0325506**, https://doi.org/10.1090/S0025-5718-1973-0325506-7**[15]**Stan Wagon,*The evidence: perfect numbers*, Math. Intelligencer**7**(1985), no. 2, 66–68. MR**784945**, https://doi.org/10.1007/BF03024179

Retrieve articles in *Mathematics of Computation*
with MSC:
11A25,
11Y05,
11Y70

Retrieve articles in all journals with MSC: 11A25, 11Y05, 11Y70

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0968150-2

Article copyright:
© Copyright 1989
American Mathematical Society