Some pseudoprimes and related numbers having special forms

Author:
Wayne L. McDaniel

Journal:
Math. Comp. **53** (1989), 407-409

MSC:
Primary 11A07; Secondary 11Y99

MathSciNet review:
968152

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a pseudoprime which is itself of the form , answering a question posed by A. Rotkiewicz, show that Lehmer's example of an even pseudoprime having three prime factors is not unique, and answer a question of Benkoski concerning the solutions of .

**[1]**S. J. Benkoski, Review of "On the congruence ." MR 87e:11005.**[2]**John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr.,*Factorizations of 𝑏ⁿ±1*, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. 𝑏=2,3,5,6,7,10,11,12 up to high powers. MR**715603****[3]**L. E. Dickson,*History of the Theory of Numbers*, Chelsea, New York, 1952.**[4]**P. Erdös,*On almost primes*, Amer. Math. Monthly**57**(1950), 404–407. MR**0036259****[5]**P. Erdös & R. L. Graham,*Old and New Problems and Results in Combinatorial Number Theory*, Monographies de L'Enseignement Mathématique, No. 28, Genève, 1980.**[6]**Péter Kiss and Bui Minh Phong,*On a problem of A. Rotkiewicz*, Math. Comp.**48**(1987), no. 178, 751–755. MR**878704**, 10.1090/S0025-5718-1987-0878704-8**[7]**Wayne L. McDaniel,*The generalized pseudoprime congruence 𝑎^{𝑛-𝑘}≡𝑏^{𝑛-𝑘}(𝑚𝑜𝑑𝑛)*, C. R. Math. Rep. Acad. Sci. Canada**9**(1987), no. 3, 143–147. MR**888647****[8]**Wayne L. McDaniel,*The existence of solutions of the generalized pseudoprime congruence 𝑎^{𝑓(𝑛)}≡𝑏^{𝑓(𝑛)}\pmod𝑛*, Colloq. Math.**59**(1990), no. 2, 177–190. MR**1090649****[9]**A. Rotkiewicz,*Pseudoprime numbers and their generalizations*, Student Association of the Faculty of Sciencies, University of Novi Sad, Novi Sad, 1972. MR**0330034****[10]**A. Rotkiewicz,*On the congruence 2ⁿ⁻²≡1(𝑚𝑜𝑑𝑛)*, Math. Comp.**43**(1984), no. 167, 271–272. MR**744937**, 10.1090/S0025-5718-1984-0744937-1**[11]**Mok-Kong Shen,*On the congruence 2^{𝑛-𝑘}≡1(𝑚𝑜𝑑𝑛)*, Math. Comp.**46**(1986), no. 174, 715–716. MR**829641**, 10.1090/S0025-5718-1986-0829641-5**[12]**M. Zhang (unpublished result).

Retrieve articles in *Mathematics of Computation*
with MSC:
11A07,
11Y99

Retrieve articles in all journals with MSC: 11A07, 11Y99

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0968152-6

Keywords:
Pseudoprime

Article copyright:
© Copyright 1989
American Mathematical Society