Some Pseudoprimes and Related Numbers
Having Special Forms

By Wayne L. McDaniel

Abstract. We give an example of a pseudoprime which is itself of the form $2^n - 2$, answering a question posed by A. Rotkiewicz, show that Lehmer's example of an even pseudoprime having three prime factors is not unique, and answer a question of Benkoski concerning the solutions of $2^n - 2 \equiv 1 \pmod{n}$.

1. Introduction. The following theorem is a slightly more general form of a result which has been applied to the discovery of pseudoprimes (that is, of composite integers n such that $n | (2^n - 2)$) for many years (see Dickson [3, v. 1, pp. 91-95]).

THEOREM 1. Let u be any integer, $n = p_1p_2 \cdots p_s$ with p_1, \ldots, p_s distinct primes, a be any integer such that $(a,n) = 1$, and e_i be the order of a modulo p_i for $1 \leq i \leq s$. If r_i is the least nonnegative integer such that $a^{r_i} \equiv u \pmod{p_i}$, then

$$a^{cn-k} \equiv u \pmod{n}$$

if and only if $e_i | (cn/p_i - k - r_i)$ for $i = 1, 2, \ldots, s$.

Proof. The convergence $a^{cn-k} \equiv u \pmod{n}$ holds if and only if, for each i, $a^{cn-k-r_i} \equiv 1 \pmod{p_i}$, which holds precisely if $e_i | (cn - k - r_i)$ for each i. But

$$cn - k - r_i = \frac{cn}{p_i} (p_i - 1) + \left(\frac{cn}{p_i} - k - r_i \right).$$

The computation involved in the application of this theorem to our problem is quite straightforward, requiring only a programmable hand-held calculator (we used a Casio fx-4000P), and, on occasion, the tables [2].

2. Applications. We now apply Theorem 1 to three distinct problems.

Application 1. In his book Pseudoprime Numbers and Their Generalizations [9], Rotkiewicz asks (problem #22) if there exists a pseudoprime of the form $2^N - 2$. We find a pseudoprime of this form by first applying Theorem 1 to the congruence $2^{p_1p_2+1} \equiv 3 \pmod{p_1p_2}$ (i.e., $c = 1$, $k = -1$, $a = 2$, $u = 3$). Letting r_1 assume the values 2, 4, 6, \ldots, we find that when $r_1 = 26$, then $37 | (2^{26} - 3)$. Choosing $p_1 = 37$ and $r_2 = p_1 + 1$ assures that for any positive integer e_2, $e_2 | (n/p_2 - k - r_2)$. Upon examining the divisors of $2^{r_2} - 3$, it is found that the divisor $p_2 = 12589$ satisfies the condition $(p_1 - 1) | (n/p_1 - k - r_1)$. It follows from the theorem that $2^{n+1} \equiv 3$
(mod n) for n = p1p2. Indeed,

\[2^{n+1} - 3 \equiv 2^{p_1}p_2+1 - 3 \equiv \begin{cases}
2^{37+1} - 3 \equiv 0 \text{ (mod 12589)}, \\
2^{12589+1} - 3 \equiv 2^{36 \cdot 349} \cdot 2^{26} - 3 \equiv 0 \text{ (mod 37)}.
\end{cases} \]

Let \(N = 37 \cdot 12589 + 1 = 465794 \) and \(m = 2^N - 2 \). Now,

\[(N - 1) | (2^N - 3) \Rightarrow (2^{N-1} - 1) | (2^{2^N-3} - 1) \]
\[\Rightarrow (2^N - 2) | (2^{2^N-2} - 2) \Rightarrow 2^m \equiv 2 \text{ (mod m)}. \]

We believe, but have not shown, that \(N = 465794 \) is the smallest integer such that \(2^N - 2 \) is a pseudoprime.

Application 2. In [9, problem 51], Rotkiewicz asks whether there exist infinitely many even pseudoprimes which are the product of three primes. The only known example is \(161038 = 2 \cdot 73 \cdot 1103 \), found by D. H. Lehmer (see Erdös [4]). While answering Rotkiewicz's question would appear to be quite difficult, it is not difficult to show that there are at least three solutions.

We apply Theorem 1 to the congruence \(2^{2p_1p_2-1} \equiv 1 \text{ (mod } p_1p_2) \) (i.e., \(c = 2, \ k = 1, \ u = 1 \)), proceeding by letting \(e_1 \) assume the values 3, 5, 7, We readily find that \(e_1 = 23 \) and \(e_1 = 41 \) lead, respectively, to the two solutions \(N_1 = 2 \cdot 178481 \cdot 154565233 \) and \(N_2 = 2 \cdot 1087 \cdot 164511353 \). Verification, using the tables [2] is immediate (2 belongs to 23 modulo 178481, to 1119 modulo 154565233, to 543 modulo 1087 and to 41 modulo 164511353). Hence, \(N_1 \) and \(N_2 \) are even pseudoprimes having exactly three prime factors.

Application 3. S. J. Benkoski observes, in his review [1] of Mok-Kong Shen's paper "On the congruence \(2^n-k \equiv 1 \text{ (mod } n) \)" [11], that Shen's five solutions \(n \) of \(2^{n-2} \equiv 1 \text{ (mod } n) \) are each congruent to 7 modulo 10, and asks whether there is a solution whose last digit is not 7.

Applying Theorem 1 to \(2^{p_1p_2-2} \equiv 1 \text{ (mod } p_1p_2) \), we find that, for \(e_1 = 9, p_1 | (2^{e_1} - 1) \) for \(p_1 = 73 \); letting \(e_2 = 71 \) assures that \(e_2 | (p_1 - 2) \). From the tables [2], we find that \(p_2 = 48544121 \) is a prime divisor of \(2^{71} - 1 \) and \(e_1 | (p_2 - 2) \). Hence, \(n = 73 \cdot 48544121 \) is a solution of \(2^{n-2} \equiv 1 \text{ (mod } n) \) which is not congruent to 7 modulo 10.

Two other, larger, solutions of \(2^{n-2} \equiv 1 \text{ (mod } n) \) which are not congruent to 7 modulo 10 are, in fact, known. Rotkiewicz [10] showed that if \(m \) satisfies the congruence \(2^m \equiv 3 \text{ (mod } m) \), then \(n = 2^m - 1 \) is a solution of \(2^{n-2} \equiv 1 \text{ (mod } n) \); the only known solution \(m = 470063497 \) (found by Lehmer [5, p. 96]) of \(2^m \equiv 3 \text{ (mod } m) \) gives a solution \(n \) congruent to 1 modulo 10 of \(2^{n-2} \equiv 1 \text{ (mod } n) \). The referee of this paper has informed us that Professor Mingzhi Zhang has noted the above example and has given the following additional example: \(n = p_1p_2 \) where \(p_1 = 524287 \) and \(p_2 = 13264529 \) (\(p_1 = 2^{19} - 1 \) and \(p_2 | 2^{47} - 1 \) [12]).

Benkoski's question is interesting because it leads to the following more general observation which implies the existence of infinitely many solutions \(n \) of \(2^{n-2} \equiv 1 \text{ (mod } n) \) which are congruent to 7 modulo 10. We note, prior to stating the theorem, that \(a^{n-k} \equiv 1 \text{ (mod } n) \) has been shown to have infinitely many solutions for all pairs of positive integers \(a \) and \(k \) [6, 7] (for \(a = k = 2 \), see [10], and for \(k \) negative, [8]).
THEOREM 2. If \(a^{n-k} \equiv 1 \pmod{n} \) has a solution \(n = n_0 > 2k - 1 \) such that \(n_0 \equiv k \pmod{5} \), then the congruence has infinitely many solutions congruent to \(n_0 \) modulo 10 (and hence, also, congruent to \(k \pmod{5} \)).

Proof. Let \(n = n_0 \) satisfy the hypothesis of the theorem. Rotkiewicz showed ([9, Theorem 31]) that if \(p \) is any primitive prime divisor of \(a^{n_0-k} - 1 \) and \(n_0 \) is composite (this restriction was recently removed by McDaniel [8]) with \(n_0 > 2k-1 \), then \(pn_0 \) is also a solution (\(p \) is a primitive prime divisor of \(a^N - 1 \) if \(p \mid (a^N - 1) \) and \(p \nmid (a^m - 1) \) for \(1 \leq m < N \); it is well known that a primitive divisor has the form \(jN + 1 \)). Thus, \(p \) has the form \(p = j(n_0 - k) + 1 \) and is clearly congruent to 1 (mod 10) since \(j(n_0 - k) \) is even and divisible by 5. Hence, if \(n_1 = pn_0 \), then \(n_1 \equiv n_0 \pmod{10} \). The theorem follows.

Department of Mathematics and Computer Science
University of Missouri-St. Louis
St. Louis, Missouri 63121

1. S. J. Benkoski, Review of “On the congruence \(2^{n-k} \equiv 1 \pmod{n} \).” MR 87e:11005.
8. W. L. McDaniel, “The existence of solutions of the generalized pseudoprime congruence \(a^{f(n)} \equiv b^{f(n)} \pmod{n} \).” (To appear.)
9. A. Rotkiewicz, Pseudoprime Numbers and Their Generalizations, Student Association of the Faculty of Sciences, Univ. of Novi Sad, 1972.