On the convergence of a time discretization scheme for the Navier-Stokes equations

Author:
T. Geveci

Journal:
Math. Comp. **53** (1989), 43-53

MSC:
Primary 65M10; Secondary 35Q10, 76-08, 76D05

DOI:
https://doi.org/10.1090/S0025-5718-1989-0969488-5

MathSciNet review:
969488

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A linearized version of the implicit Euler scheme is considered for the approximation of the solutions to the Navier-Stokes equations in a two-dimensional domain. The rate of convergence in the -norm is established.

**[1]**H. Amann, "Existence and stability of solutions for semilinear parabolic systems and applications to some diffusion reaction equations,"*Proc. Roy. Soc. Edinburgh Sect. A*, v. 81, 1978, pp. 35-47. MR**529375 (80b:35078)****[2]**G. A. Baker, V. A. Dougalis ic O. A. Karakashian, "On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations,"*Math. Comp.*, v. 39, 1982, pp. 339-375. MR**669634 (84h:65096)****[3]**M. Crouzeix & V. Thomée,*On the Discretization in Time of Semilinear Parabolic Equations with Non-Smooth Initial Data*, Preprint, Université de Rennes, 1985.**[4]**C. Foias & R. Temam, "Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations,"*J. Math. Pures Appl.*, v. 58, 1979, pp. 339-368. MR**544257 (81k:35130)****[5]**H. Fujita & T. Kato, "On the Navier-Stokes initial value problem. I,"*Arch. Rational Mech. Anal.*, v. 16, 1964, pp. 269-315. MR**0166499 (29:3774)****[6]**H. Fujita & A. Mizutani, "On the finite element method for parabolic equations, I: Approximation of holomorphic semi-groups,"*J. Math. Soc. Japan*, v. 28, 1976, pp. 749-771. MR**0428733 (55:1753)****[7]**H. Fujita & H. Morimoto, "On fractional powers of the Stokes operator,"*Proc. Japan Acad.*, v. 46, 1970, pp. 1141-1143. MR**0296755 (45:5814)****[8]**V. Girault & P. A. Raviart,*Finite Element Approximation of Navier-Stokes Equations*, Lecture Notes in Math., vol. 749, Springer-Verlag, Berlin and New York, 1979. MR**548867 (83b:65122)****[9]**J. G. Heywood & R. Rannacher, "Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order estimates for spatial discretization,"*SIAM J. Numer. Anal.*, v. 19, 1982, pp. 275-311. MR**650052 (83d:65260)****[10]**J. G. Heywood & R. Rannacher, "Finite element approximation of the nonstationary Navier-Stokes problem, Part II: Stability of solutions and error estimates uniform in time,"*SIAM J. Numer. Anal.*, v. 23, 1986, pp. 750-777. MR**849281 (88b:65132)****[11]**J. G. Heywood & R. Rannacher, "Finite element approximation of the nonstationary Navier-Stokes problem, Part III. Smoothing property and higher order error estimates for spatial discretization,"*SIAM J. Numer. Anal.*, v. 25, 1988, pp. 489-512. MR**942204 (89k:65114)****[12]**J. G. Heywood & R. Rannacher, "Finite element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second order time discretization," Preprint. MR**1043610 (92c:65133)****[13]**J. W. Jerome,*Approximation of Nonlinear Evolution Systems*, Academic Press, New York and London, 1983. MR**690582 (85g:35064)****[14]**T. Kato,*Perturbation Theory for Linear Operators*, 2nd ed., Springer-Verlag, Berlin and New York, 1976. MR**0407617 (53:11389)****[15]**T. Kato & H. Fujita, "On the non-stationary Navier-Stokes system,"*Rend. Sem. Mat. Univ. Padova*, v. 32, 1962, pp. 243-260. MR**0142928 (26:495)****[16]**M. N. Le Roux, "Méthodes multipas pour des équations paraboliques non linéaires,"*Numer. Math.*, v. 35, 1980, pp. 143-162. MR**585243 (81i:65075)****[17]**H. Okamoto, "On the semi-discrete finite element approximation for the nonstationary Stokes equation,"*J. Fac. Sci. Univ. Tokyo Sect. IA*, v. 29, 1982, pp. 241-260. MR**657878 (83h:65111)****[18]**H. Okamoto, "On the semi-discrete finite element approximation for the nonstationary Navier-Stokes equation,"*J. Fac. Sci. Univ. Tokyo Sect. IA*, v. 29, 1982, pp. 613-651. MR**687594 (84e:65115)****[19]**R. Rannacher, "Stable finite element solutions to nonlinear parabolic problems of Navier-Stokes type," in*Computing Methods in Applied Sciences and Engineering*V (R. Glowinski and J. L. Lions, eds.), North-Holland, Amsterdam, 1982, pp. 301-309. MR**784647 (86h:65145)****[20]**R. Rautmann, "A semigroup approach to error estimates for nonstationary Navier-Stokes approximations,"*Methoden Verfahren Math. Phys.*, v. 27, 1983, pp. 63-77. MR**763003 (86b:65127)****[21]**R. Rautmann, "On optimum regularity of Navier-Stokes solutions at time ,"*Math. Z.*, v. 184, 1983, pp. 141-149. MR**716267 (86a:35118)****[22]**R. Temam,*Navier-Stokes Equations, Theory and Numerical Analysis*, 2nd ed., North-Holland, Amsterdam, 1979. MR**603444 (82b:35133)****[23]**R. Temam, "Behaviour at time of the solutions of semilinear evolution equations,"*J. Differential Equations*, v. 43, 1982, pp. 73-92. MR**645638 (83c:35058)****[24]**R. Temam,*Navier-Stokes Equations and Nonlinear Functional Analysis*, CBMS-NSF Regional Conf. Ser. in Applied Math., vol. 41, SIAM, Philadelphia, 1983. MR**764933 (86f:35152)****[25]**V. Thomée,*Galerkin Finite Element Methods for Parabolic Problems*, Lecture Notes in Math., vol. 1054, Springer-Verlag, Berlin and New York, 1984. MR**744045 (86k:65006)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
35Q10,
76-08,
76D05

Retrieve articles in all journals with MSC: 65M10, 35Q10, 76-08, 76D05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0969488-5

Article copyright:
© Copyright 1989
American Mathematical Society