-clusters for

Authors:
Landon Curt Noll and David I. Bell

Journal:
Math. Comp. **53** (1989), 439-444

MSC:
Primary 52A37

DOI:
https://doi.org/10.1090/S0025-5718-1989-0970702-0

MathSciNet review:
970702

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An *n*-cluster is a set of *n* lattice points in with no 3 points collinear, no 4 points concyclic, and where all mutual distances are nonzero integers. The initial discoveries of *n*-clusters for are reported. A progress report on small 6-clusters and the search for a 7-cluster is described. A question on the impact of the lattice point restriction is raised, and the definition of *n*-cluster is generalized to .

**[1]**Norman H. Anning & Paul Erdös, "Integral distances,"*Bull. Amer. Math. Soc.*, v. 51, 1945, pp. 598-600. MR**0013511 (7:164a)****[2]**A. S. Besicovitch, "Rational polygons,"*Mathematika*, v. 6, 1959, p. 98. MR**0110682 (22:1557)****[3]**D. E. Daykin, "Rational polygons,"*Mathematika*, v. 10, 1963, pp. 125-131. MR**0169820 (30:63)****[4]**Paul Erdös, "Integral distances,"*Bull. Amer. Math. Soc.*, v. 51, 1945, p. 996. MR**0013512 (7:164b)****[5]**Richard K. Guy,*Unsolved Problems in Number Theory*, Springer-Verlag, New York, 1981. MR**656313 (83k:10002)****[6]**William Kalsow, Private communication.**[7]**Arnfried Kemnitz, Private communication.**[8]**Kevin J. Romero, Private communication.**[9]**T. K. Sheng, "Rational polygons,"*J. Austral. Math. Soc.*, v. 6, 1966, pp. 452-459. MR**0209235 (35:137)****[10]**T. K. Sheng & D. E. Daykin, "On approximating polygons by rational polygons,"*Math. Mag.*, v. 38, 1966, pp. 299-300. MR**0207648 (34:7463)**

Retrieve articles in *Mathematics of Computation*
with MSC:
52A37

Retrieve articles in all journals with MSC: 52A37

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0970702-0

Article copyright:
© Copyright 1989
American Mathematical Society