A fast algorithm for rational interpolation via orthogonal polynomials

Authors:
Ömer Eğecioğlu and Çetin K. Koç

Journal:
Math. Comp. **53** (1989), 249-264

MSC:
Primary 65D05; Secondary 33A65, 41A05

DOI:
https://doi.org/10.1090/S0025-5718-1989-0972369-4

MathSciNet review:
972369

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new algorithm for rational interpolation is proposed. Given the data set, the algorithm generates a set of orthogonal polynomials by the classical three-term recurrence relation and then uses Newton interpolation to find the numerator and the denominator polynomials of the rational interpolating function. The number of arithmetic operations of the algorithm to find a particular rational interpolant is , where is the number of data points. A variant of this algorithm that avoids Newton interpolation can be used to construct all rational interpolants using only arithmetic operations.

**[1]**Philip J. Davis,*Interpolation and approximation*, Dover Publications, Inc., New York, 1975. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. MR**0380189****[2]**Ö. Egecioglu & Ç. K. Koç,*An**Parallel Algorithm for Rational Interpolation*, Technical Report No. TRCS88-2, Department of Computer Science, University of California, Santa Barbara, August 1988.**[3]**George E. Forsythe,*Generation and use of orthogonal polynomials for data-fitting with a digital computer*, J. Soc. Indust. Appl. Math.**5**(1957), 74–88. MR**0092208****[4]**P. R. Graves-Morris and T. R. Hopkins,*Reliable rational interpolation*, Numer. Math.**36**(1980/81), no. 2, 111–128. MR**611488**, https://doi.org/10.1007/BF01396754**[5]**F. B. Hildebrand,*Introduction to numerical analysis*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. MR**0075670****[6]**Thomas Muir,*A treatise on the theory of determinants*, Revised and enlarged by William H. Metzler, Dover Publications, Inc., New York, 1960. MR**0114826****[7]**Anthony Ralston and Philip Rabinowitz,*A first course in numerical analysis*, 2nd ed., McGraw-Hill Book Co., New York-Auckland-Bogotá, 1978. International Series in Pure and Applied Mathematics. MR**0494814****[8]**Jorma Rissanen,*Solution of linear equations with Hankel and Toeplitz matrices*, Numer. Math.**22**(1974), 361–366. MR**0351057**, https://doi.org/10.1007/BF01436919**[9]**Theodore J. Rivlin,*An introduction to the approximation of functions*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1969. MR**0249885****[10]**Claus Schneider and Wilhelm Werner,*Some new aspects of rational interpolation*, Math. Comp.**47**(1986), no. 175, 285–299. MR**842136**, https://doi.org/10.1090/S0025-5718-1986-0842136-8**[11]**G. Szegö,*Orthogonal Polynomials*, Amer. Math. Soc., Providence, R. I., 1959.**[12]**William F. Trench,*An algorithm for the inversion of finite Hankel matrices*, J. Soc. Indust. Appl. Math.**13**(1965), 1102–1107. MR**0189232**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D05,
33A65,
41A05

Retrieve articles in all journals with MSC: 65D05, 33A65, 41A05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0972369-4

Keywords:
Rational interpolation,
orthogonal polynomials,
Hankel matrices

Article copyright:
© Copyright 1989
American Mathematical Society