Long chains of nearly doubled primes

Author:
Günter Löh

Journal:
Math. Comp. **53** (1989), 751-759

MSC:
Primary 11A41; Secondary 11Y11

DOI:
https://doi.org/10.1090/S0025-5718-1989-0979939-8

MathSciNet review:
979939

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A chain of nearly doubled primes is an ordered set of prime numbers, interlinked by . A search for long chains of this kind has been performed in the range . Chains of length up to 13 have been found. Shorter chains have been counted in some restricted ranges. Some of these counts are compared with the frequencies predicted by a quantitative version of the prime *k*-tuples conjecture.

**[1]**Paul T. Bateman & Roger A. Horn, "A heuristic asymptotic formula concerning the distribution of prime numbers,"*Math. Comp.*, v. 16, 1962, pp. 363-367. MR**26**#6139. MR**0148632 (26:6139)****[2]**Allan Cunningham, "On hyper-even numbers and on Fermat's numbers,"*Proc. London Math. Soc. (2)*, v. 5, 1907, pp. 237-274.**[3]**Richard K. Guy,*Unsolved Problems in Number Theory*, Springer-Verlag, New York, 1981. Updated Japanese edition, Tokyo, 1983. MR**656313 (83k:10002)****[4]**G. H. Hardy & J. E. Littlewood, "Some problems of 'partitio numerorum'; III: On the expression of a number as a sum of primes,"*Acta Math.*, v. 44, 1923, pp. 1-70. MR**1555183****[5]**Claude Lalout & Jean Meeus, "Nearly-doubled primes,"*J. Recreational Math.*, v. 13, 1980-81, pp. 30-35.**[6]**D. H. Lehmer, "On certain chains of primes,"*Proc. London Math. Soc. (3)*, v. 14A, 1965, pp. 183-186. MR**31**#2222. MR**0177964 (31:2222)****[7]**R. P. Nederpelt, R. B. Eggleton & John H. Loxton,. "Problem E 2648,"*Amer. Math. Monthly*, v. 84, 1977, p. 294. Stanley Wagon, Milton Eisner et al., "Solution and discussion of Problem E 2648," Amer. Math. Monthly, v. 84, 1977, pp. 595-596 MR**1538330****[8]**Paulo Ribenboim,*13 Lectures on Fermat's Last Theorem*, Springer-Verlag, New York, 1979. MR**551363 (81f:10023)****[9]**Hans Riesel,*Prime Numbers and Computer Methods for Factorization*, Birkhäuser, Boston, 1985. MR**897531 (88k:11002)****[10]**A. Schinzel & W. Sierpiński, "Sur certaines hypothèses concernant les nombres premiers,"*Acta Arith.*, v. 4, 1958, pp. 185-208. MR**21**#4936.**[11]**Takao Sumiyama, "Cunningham chains of length 8 and 9,"*Abstracts Amer. Math. Soc.*, v. 4, 1983, p. 192, 83T-05-72.**[12]**Takao Sumiyama, "The distribution of Cunningham chains,"*Abstracts Amer. Math. Soc.*, v. 4, 1983, p. 489, 83T-10-405.**[13]**Samuel Yates,*Repunits and Repetends*, Star Publishing Co., Delray Beach, Florida, 1982. MR**667020 (83k:10014)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A41,
11Y11

Retrieve articles in all journals with MSC: 11A41, 11Y11

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0979939-8

Keywords:
Nearly doubled primes,
prime chains,
Cunningham chains,
prime *k*-tuples conjecture

Article copyright:
© Copyright 1989
American Mathematical Society