Long chains of nearly doubled primes
Author:
Günter Löh
Journal:
Math. Comp. 53 (1989), 751759
MSC:
Primary 11A41; Secondary 11Y11
MathSciNet review:
979939
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A chain of nearly doubled primes is an ordered set of prime numbers, interlinked by . A search for long chains of this kind has been performed in the range . Chains of length up to 13 have been found. Shorter chains have been counted in some restricted ranges. Some of these counts are compared with the frequencies predicted by a quantitative version of the prime ktuples conjecture.
 [1]
Paul
T. Bateman and Roger
A. Horn, A heuristic asymptotic formula
concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363–367. MR 0148632
(26 #6139), http://dx.doi.org/10.1090/S00255718196201486327
 [2]
Allan Cunningham, "On hypereven numbers and on Fermat's numbers," Proc. London Math. Soc. (2), v. 5, 1907, pp. 237274.
 [3]
Richard
K. Guy, Unsolved problems in number theory, Unsolved Problems
in Intuitive Mathematics, vol. 1, SpringerVerlag, New YorkBerlin,
1981. Problem Books in Mathematics. MR 656313
(83k:10002)
 [4]
G.
H. Hardy and J.
E. Littlewood, Some problems of ‘Partitio numerorum’;
III: On the expression of a number as a sum of primes, Acta Math.
44 (1923), no. 1, 1–70. MR
1555183, http://dx.doi.org/10.1007/BF02403921
 [5]
Claude Lalout & Jean Meeus, "Nearlydoubled primes," J. Recreational Math., v. 13, 198081, pp. 3035.
 [6]
D.
H. Lehmer, On certain chains of primes, Proc. London Math.
Soc. (3) 14a (1965), 183–186. MR 0177964
(31 #2222)
 [7]
Daniel
Gallin, R.
P. Nederpelt, R.
B. Eggleton, John
H. Loxton, A.
Oppenheim, M.
J. Pelling, Paul
Erdos, and Jeffrey
L. Rackusin, Problems and Solutions: Elementary Problems:
E2647E2652, Amer. Math. Monthly 84 (1977),
no. 4, 294–295. MR
1538330, http://dx.doi.org/10.2307/2318876
 [8]
Paulo
Ribenboim, 13 lectures on Fermat’s last theorem,
SpringerVerlag, New YorkHeidelberg, 1979. MR 551363
(81f:10023)
 [9]
Hans
Riesel, Prime numbers and computer methods for factorization,
Progress in Mathematics, vol. 57, Birkhäuser Boston, Inc.,
Boston, MA, 1985. MR 897531
(88k:11002)
 [10]
A. Schinzel & W. Sierpiński, "Sur certaines hypothèses concernant les nombres premiers," Acta Arith., v. 4, 1958, pp. 185208. MR 21 #4936.
 [11]
Takao Sumiyama, "Cunningham chains of length 8 and 9," Abstracts Amer. Math. Soc., v. 4, 1983, p. 192, 83T0572.
 [12]
Takao Sumiyama, "The distribution of Cunningham chains," Abstracts Amer. Math. Soc., v. 4, 1983, p. 489, 83T10405.
 [13]
Samuel
Yates, Repunits and repetends, Samuel Yates, Delray Beach,
Fla., 1982. With a foreword by D. H. Lehmer. MR 667020
(83k:10014)
 [1]
 Paul T. Bateman & Roger A. Horn, "A heuristic asymptotic formula concerning the distribution of prime numbers," Math. Comp., v. 16, 1962, pp. 363367. MR 26 #6139. MR 0148632 (26:6139)
 [2]
 Allan Cunningham, "On hypereven numbers and on Fermat's numbers," Proc. London Math. Soc. (2), v. 5, 1907, pp. 237274.
 [3]
 Richard K. Guy, Unsolved Problems in Number Theory, SpringerVerlag, New York, 1981. Updated Japanese edition, Tokyo, 1983. MR 656313 (83k:10002)
 [4]
 G. H. Hardy & J. E. Littlewood, "Some problems of 'partitio numerorum'; III: On the expression of a number as a sum of primes," Acta Math., v. 44, 1923, pp. 170. MR 1555183
 [5]
 Claude Lalout & Jean Meeus, "Nearlydoubled primes," J. Recreational Math., v. 13, 198081, pp. 3035.
 [6]
 D. H. Lehmer, "On certain chains of primes," Proc. London Math. Soc. (3), v. 14A, 1965, pp. 183186. MR 31 #2222. MR 0177964 (31:2222)
 [7]
 R. P. Nederpelt, R. B. Eggleton & John H. Loxton,. "Problem E 2648," Amer. Math. Monthly, v. 84, 1977, p. 294. Stanley Wagon, Milton Eisner et al., "Solution and discussion of Problem E 2648," Amer. Math. Monthly, v. 84, 1977, pp. 595596 MR 1538330
 [8]
 Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem, SpringerVerlag, New York, 1979. MR 551363 (81f:10023)
 [9]
 Hans Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston, 1985. MR 897531 (88k:11002)
 [10]
 A. Schinzel & W. Sierpiński, "Sur certaines hypothèses concernant les nombres premiers," Acta Arith., v. 4, 1958, pp. 185208. MR 21 #4936.
 [11]
 Takao Sumiyama, "Cunningham chains of length 8 and 9," Abstracts Amer. Math. Soc., v. 4, 1983, p. 192, 83T0572.
 [12]
 Takao Sumiyama, "The distribution of Cunningham chains," Abstracts Amer. Math. Soc., v. 4, 1983, p. 489, 83T10405.
 [13]
 Samuel Yates, Repunits and Repetends, Star Publishing Co., Delray Beach, Florida, 1982. MR 667020 (83k:10014)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11A41,
11Y11
Retrieve articles in all journals
with MSC:
11A41,
11Y11
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198909799398
PII:
S 00255718(1989)09799398
Keywords:
Nearly doubled primes,
prime chains,
Cunningham chains,
prime ktuples conjecture
Article copyright:
© Copyright 1989
American Mathematical Society
