Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Some properties of rank-$ 2$ lattice rules


Authors: J. N. Lyness and I. H. Sloan
Journal: Math. Comp. 53 (1989), 627-637
MSC: Primary 65D32
DOI: https://doi.org/10.1090/S0025-5718-1989-0982369-6
MathSciNet review: 982369
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A rank-2 lattice rule is a quadrature rule for the (unit) s-dimensional hypercube, of the form

$\displaystyle Qf = (1/{n_1}{n_2})\sum\limits_{{j_1} = 1}^{{n_1}} {\sum\limits_{... ...{{n_2}} {\bar f({j_1}{{\mathbf{z}}_1}/{n_1} + {j_2}{{\mathbf{z}}_2}/{n_2}),} } $

which cannot be re-expressed in an analogous form with a single sum. Here $ \bar f$ is a periodic extension of f, and $ {{\mathbf{z}}_1}$, $ {{\mathbf{z}}_2}$ are integer vectors. In this paper we discuss these rules in detail; in particular, we categorize a special subclass, whose leading one- and two-dimensional projections contain the maximum feasible number of abscissas. We show that rules of this subclass can be expressed uniquely in a simple tricycle form.

References [Enhancements On Off] (What's this?)

  • [1] H. Conroy, "Molecular Schrödinger equation, VIII: A new method for the evaluation of multidimensional integrals," J. Chem. Phys., v. 47, 1967, pp. 5307-5318.
  • [2] S. Haber, "Numerical evaluation of multiple integrals," SIAM Rev., v. 12, 1970, pp. 481-526. MR 0285119 (44:2342)
  • [3] S. Haber, "Parameters for integrating periodic functions of several variables," Math. Comp., v. 41, 1983, pp. 115-129. MR 701628 (85g:65033)
  • [4] E. Hlawka, "Zur angenäherten Berechnung mehrfacher Integrale," Monatsh. Math., v. 66, 1962, pp. 140-151. MR 0143329 (26:888)
  • [5] Hua Loo Keng & Wang Yuan, Applications of Number Theory to Numerical Analysis, Springer-Verlag, Berlin, 1981. MR 617192 (83g:10034)
  • [6] P. Keast, "Optimal parameters for multidimensional integration," SIAM J. Numer. Anal., v. 10, 1973, pp. 831-838. MR 0353636 (50:6119)
  • [7] N. M. Korobov, "Properties and calculation of optimal coefficients," Dokl. Akad. Nauk SSSR, v. 132, 1960, pp. 1009-1012; English transl, in Soviet Math. Dokl., v. 1, 1960, pp. 696-700. MR 0120768 (22:11517)
  • [8] D. Maisonneuve, "Recherche et utilisation des 'bons treillis'. Programmation et résultats numériques," in Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, London, 1972, pp. 121-201. MR 0343529 (49:8270)
  • [9] H. Niederreiter, "Quasi-Monte Carlo methods and pseudo-random numbers," Bull. Amer. Math. Soc., v. 84, 1978, pp. 957-1041. MR 508447 (80d:65016)
  • [10] I. H. Sloan, "Lattice methods for multiple integration," J. Comput Appl. Math., v. 12 and 13, 1985, pp. 131-143. MR 793949 (86f:65045)
  • [11] I. H. Sloan & P. J. Kachoyan, "Lattice methods for multiple integration: theory, error analysis and examples," SIAM J. Numer. Anal., v. 24, 1987, pp. 116-128. MR 874739 (88e:65023)
  • [12] I. H. Sloan & J. N. Lyness, "The representation of lattice quadrature rules as multiple sums," Math. Comp., v. 52, 1989, pp. 81-94. MR 947468 (90a:65053)
  • [13] S. K. Zaremba, "Good lattice points, discrepancy and numerical integration," Ann. Mat. Pura Appl., v. 73, 1966, pp. 293-317. MR 0218018 (36:1107)
  • [14] S. K. Zaremba, "La méthode des "bons treillis" pour le calcul des intégrales multiples," in Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, London, 1972, pp. 39-119. MR 0343530 (49:8271)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D32

Retrieve articles in all journals with MSC: 65D32


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1989-0982369-6
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society