A stable extrapolation method for multidimensional degenerate parabolic problems

Author:
Ricardo H. Nochetto

Journal:
Math. Comp. **53** (1989), 455-470

MSC:
Primary 65N30; Secondary 35K55, 35K65, 65N15

DOI:
https://doi.org/10.1090/S0025-5718-1989-0982372-6

MathSciNet review:
982372

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Degenerate parabolic problems in several space variables are approximated by combining a preliminary regularization procedure with a finite element extrapolation method. The proposed extrapolation acts on the so-called phase variable and leads to a linear problem which is shown to be stable. The ensuing linear algebraic system involves the same matrix for all time steps. Energy error estimates are also derived for the physical unknowns. An rate of convergence is proved, provided the approximation parameters are suitably related. In case the linear systems are solved by an iterative algorithm, such as the conjugate gradient method, an tolerance for the error reduction is shown to preserve the overall accuracy; the required computational effort is thus nearly optimal.

**[1]**O. Axelsson and V. A. Barker,*Finite element solution of boundary value problems*, Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. Theory and computation. MR**758437****[2]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[3]**Jim Douglas Jr. and Todd Dupont,*Galerkin methods for parabolic equations*, SIAM J. Numer. Anal.**7**(1970), 575–626. MR**0277126**, https://doi.org/10.1137/0707048**[4]**Jim Douglas Jr. and Todd Dupont,*Alternating-direction Galerkin methods on rectangles*, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 133–214. MR**0273830****[5]**Jim Douglas Jr. and Todd Dupont,*Galerkin methods for parabolic equations with nonlinear boundary conditions*, Numer. Math.**20**(1972/73), 213–237. MR**0319379**, https://doi.org/10.1007/BF01436565**[6]**Jim Douglas Jr., Todd Dupont, and Richard E. Ewing,*Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem*, SIAM J. Numer. Anal.**16**(1979), no. 3, 503–522. MR**530483**, https://doi.org/10.1137/0716039**[7]**Avner Friedman,*The Stefan problem in several space variables*, Trans. Amer. Math. Soc.**133**(1968), 51–87. MR**0227625**, https://doi.org/10.1090/S0002-9947-1968-0227625-7**[8]**Joseph W. Jerome and Michael E. Rose,*Error estimates for the multidimensional two-phase Stefan problem*, Math. Comp.**39**(1982), no. 160, 377–414. MR**669635**, https://doi.org/10.1090/S0025-5718-1982-0669635-2**[9]**Mitchell Luskin,*A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions*, SIAM J. Numer. Anal.**16**(1979), no. 2, 284–299. MR**526490**, https://doi.org/10.1137/0716021**[10]**Enrico Magenes,*Two-phase Stefan problems in several space variables*, Matematiche (Catania)**36**(1981), no. 1, 65–108 (1983) (Italian). MR**736797****[11]**E. Magenes,*Remarques sur l’approximation des problèmes paraboliques non linéaires*, Analyse mathématique et applications, Gauthier-Villars, Montrouge, 1988, pp. 297–318 (French). MR**956965****[12]**E. Magenes, R. H. Nochetto, and C. Verdi,*Energy error estimates for a linear scheme to approximate nonlinear parabolic problems*, RAIRO Modél. Math. Anal. Numér.**21**(1987), no. 4, 655–678 (English, with French summary). MR**921832**, https://doi.org/10.1051/m2an/1987210406551**[13]**Ricardo H. Nochetto,*Error estimates for two-phase Stefan problems in several space variables. I. Linear boundary conditions*, Calcolo**22**(1985), no. 4, 457–499 (1986). MR**859087**, https://doi.org/10.1007/BF02575898**[14]**Ricardo H. Nochetto,*Error estimates for multidimensional singular parabolic problems*, Japan J. Appl. Math.**4**(1987), no. 1, 111–138. MR**899207**, https://doi.org/10.1007/BF03167758**[15]**R. H. Nochetto, "Numerical methods for free boundary problems," in*Free Boundary Problems*:*Theory and Applications*(K. H. Hoffmann and J. Sprekels, eds.), vols. V, VI, Research Notes in Math., Longman, London, 1988. (To appear.)**[16]**Ricardo H. Nochetto and Claudio Verdi,*An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation*, Math. Comp.**51**(1988), no. 183, 27–53. MR**942142**, https://doi.org/10.1090/S0025-5718-1988-0942142-0**[17]**R. H. Nochetto and C. Verdi,*The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems*, Numer. Funct. Anal. Optim.**9**(1987/88), no. 11-12, 1177–1192. MR**936337**, https://doi.org/10.1080/01630568808816279**[18]**M. Paolini, G. Sacchi, and C. Verdi,*Finite element approximations of singular parabolic problems*, Internat. J. Numer. Methods Engrg.**26**(1988), no. 9, 1989–2007. MR**955582**, https://doi.org/10.1002/nme.1620260907**[19]**Michael E. Rose,*Numerical methods for flows through porous media. I*, Math. Comp.**40**(1983), no. 162, 435–467. MR**689465**, https://doi.org/10.1090/S0025-5718-1983-0689465-6

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
35K55,
35K65,
65N15

Retrieve articles in all journals with MSC: 65N30, 35K55, 35K65, 65N15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0982372-6

Keywords:
Mushy region,
regularization,
extrapolation,
finite elements

Article copyright:
© Copyright 1989
American Mathematical Society