Complex variable and regularization methods of inversion of the Laplace transform

Authors:
D. D. Ang, John Lund and Frank Stenger

Journal:
Math. Comp. **53** (1989), 589-608

MSC:
Primary 65R10; Secondary 44A10

DOI:
https://doi.org/10.1090/S0025-5718-1989-0983558-7

MathSciNet review:
983558

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper three methods are derived for approximating *f*, given its Laplace transform *g* on , i.e., . Assuming that , the first method is based on a Sinc-like rational approximation of *g*, the second on a Sinc solution of the integral equation via standard regularization, and the third method is based on first converting to a convolution integral over , and then finding a Sinc approximation to *f* via the application of a special regularization procedure to solve the Fourier transform problem. We also obtain bounds on the error of approximation, which depend on both the method of approximation and the regularization parameter.

**[1]**Richard Bellman, Robert E. Kalaba, and Jo Ann Lockett,*Numerical inversion of the Laplace transform: Applications to biology, economics, engineering and physics*, American Elsevier Publishing Co., Inc., New York, 1966. MR**0205454****[2]**B. S. Berger, "Inversion of the*n*-dimensional Laplace transform,"*Math. Comp.*, v. 20, 1966, pp. 418-421.**[3]**B. S. Berger, "The inversion of the Laplace transform with application to the vibrations of continuous elastic bodies,"*J. Appl. Mech.*, v. 35, 1968, pp. 837-839.**[4]**B. S. Berger & S. Duangudom, "A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications,"*J. Appl. Mech.*, v. 40, 1973, pp. 1110-1112.**[5]**Claude Brezinski and Jeannette Van Iseghem,*Padé-type approximants and linear functional transformations*, Rational approximation and interpolation (Tampa, Fla., 1983) Lecture Notes in Math., vol. 1105, Springer, Berlin, 1984, pp. 100–108. MR**783264**, https://doi.org/10.1007/BFb0072402**[6]**J. W. Cooley, P. A. W. Lewis & P. D. Welch, "The fast Fourier transform algorithm: Programming considerations in the calculation of sine, cosine, and Laplace transforms,"*J. Sound Vibration*, v. 12, 1970, pp. 315-337.**[7]**James W. Cooley and John W. Tukey,*An algorithm for the machine calculation of complex Fourier series*, Math. Comp.**19**(1965), 297–301. MR**0178586**, https://doi.org/10.1090/S0025-5718-1965-0178586-1**[8]**Kenny S. Crump,*Numerical inversion of Laplace transforms using a Fourier series approximation*, J. Assoc. Comput. Mach.**23**(1976), no. 1, 89–96. MR**0436552**, https://doi.org/10.1145/321921.321931**[9]**A. R. Davies,*On the maximum likelihood regularization of Fredholm convolution equations of the first kind*, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 95–105. MR**755345****[10]**Brian Davies and Brian Martin,*Numerical inversion of the Laplace transform: a survey and comparison of methods*, J. Comput. Phys.**33**(1979), no. 1, 1–32. MR**549576**, https://doi.org/10.1016/0021-9991(79)90025-1**[11]**H. Dubner and J. Abate,*Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform*, J. Assoc. Comput. Mach.**15**(1968), 115–123. MR**0235726**, https://doi.org/10.1145/321439.321446**[12]**A. Erdélyi, "Inversion formula for the Laplace transform,"*Philos. Mag.*, v. 34, 1943, pp. 533-537.**[13]**William Feller,*An introduction to probability theory and its applications. Vol. II.*, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0270403****[14]**D. S. Gilliam, J. R. Schulenberger, and J. R. Lund,*Spectral representation of the Laplace transform and related operators in 𝐿₂(𝑅₊)*, Computational and combinatorial methods in systems theory (Stockholm, 1985) North-Holland, Amsterdam, 1986, pp. 69–73. MR**923997****[15]**Richard R. Goldberg and Richard S. Varga,*Moebius inversion of Fourier transforms*, Duke Math. J.**23**(1956), 553–559. MR**0080800****[16]**S. È¦. Gustafson and G. Dahlquist,*On the computation of slowly convergent Fourier integrals*, Methoden und Verfahren der mathematischen Physik, Band 6, Bibliographisches Inst., Mannheim, 1972, pp. 93–112. B. I.-Hochschultaschenbücher, No. 725. MR**0359377****[17]**Peter Henrici,*Applied and computational complex analysis. Vol. 2*, Wiley Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR**0453984****[18]**F. R. de Hoog, J. H. Knight, and A. N. Stokes,*An improved method for numerical inversion of Laplace transforms*, SIAM J. Sci. Statist. Comput.**3**(1982), no. 3, 357–366. MR**667833**, https://doi.org/10.1137/0903022**[19]**Yasuhiko Ikebe,*The Galerkin method for the numerical solution of Fredholm integral equations of the second kind*, SIAM Rev.**14**(1972), 465–491. MR**0307515**, https://doi.org/10.1137/1014071**[20]**R. E. Jones,*Solving Linear Algebraic Systems Arising in the Solution of Integral Equations of the First Kind*, Ph.D. Dissertation, University of New Mexico, 1985.**[21]**I. M. Longman,*Note on a method for computing infinite integrals of oscillatory functions*, Proc. Cambridge Philos. Soc.**52**(1956), 764–768. MR**0082193****[22]**Yudell L. Luke,*On the computation of oscillatory integrals*, Proc. Cambridge Philos. Soc.**50**(1954), 269–277. MR**0062518****[23]**J. Ross MacDonald, "Accelerated convergence, divergence, iteration, extrapolation, and curve fitting,"*J. Appl. Phys.*, v. 35, 1964, pp. 3034-3041.**[24]**Martin J. Marsden and Gerald D. Taylor,*Numerical evaluation of Fourier integrals*, Numerische Methoden der Approximationstheorie, Band 1 (Tagung, Oberwolfach, 1971) Birkhäuser, Basel, 1972, pp. 61–76. Internat. Schriftenreihe Numer. Math., Band 16. MR**0386234****[25]**J. T. Marti,*On a regularization method for Fredholm equations of the first kind using Sobolev spaces*, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 59–66. MR**755342****[26]**Piero de Mottoni and Giorgio Talenti,*Stabilization and error bounds for the inverse Laplace transform*, Numer. Funct. Anal. Optim.**3**(1981), no. 3, 265–283. MR**629946**, https://doi.org/10.1080/01630568108816090**[27]**M. Z. Nashed and Grace Wahba,*Some exponentially decreasing error bounds for a numerical inversion of the Laplace transform*, J. Math. Anal. Appl.**52**(1975), no. 3, 660–668. MR**0431668**, https://doi.org/10.1016/0022-247X(75)90087-6**[28]**National Bureau of Standards,*Handbook of Mathematical Functions*, vol. 55, Applied Math. Series, Pitman, Boston, 1964.**[29]**Athanasios Papoulis,*A new method of inversion of the Laplace transform*, Quart. Appl. Math.**14**(1957), 405–414. MR**0082734**, https://doi.org/10.1090/S0033-569X-1957-82734-2**[30]**R. Piessens,*Numerical inversion of the Laplace transform*, IEEE Trans. Automatic Control**AC-14**(1969), 299–301. MR**0245178****[31]**Emil L. Post,*Generalized differentiation*, Trans. Amer. Math. Soc.**32**(1930), no. 4, 723–781. MR**1501560**, https://doi.org/10.1090/S0002-9947-1930-1501560-X**[32]**Frigyes Riesz and Béla Sz.-Nagy,*Functional analysis*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR**0071727****[33]**Herbert E. Salzer,*Tables for the numerical calculation of inverse Laplace transforms.*, J. Math. and Phys.**37**(1958), 89–109. MR**0102907****[34]**Herbert E. Salzer,*Additional formulas and tables for orthogonal polynomials originating from inversion integrals*, J. Math. and Phys.**40**(1961), 72–86. MR**0129576****[35]**R. A. Schapery,*Approximate methods of transform inversion for viscoelastic stress analysis*, Proc. 4th U.S. Nat. Congr. Appl. Mech. (Univ. California, Berkeley, Calif., 1962) Amer. Soc. Mech. Engrs., New York, 1962, pp. 1075–1085. MR**0153175****[36]**C. J. Shirtliffe and D. G. Stephenson,*A computer oriented adaption of Salzer’s method for inverting Laplace transforms*, J. Math. and Phys.**40**(1961), 135–141. MR**0150949****[37]**Kishore Singhal and Jiri Vlach,*Computation of time domain response by numerical inversion of the Laplace transform*, J. Franklin Inst.**299**(1975), 109–126. MR**0375744**, https://doi.org/10.1016/0016-0032(75)90133-7**[38]**M. Silverberg, "Improving the efficiency of Laplace transform inversion for network analysis,"*Electron. Lett.*, v. 6, 1970, pp. 105-106.**[39]**Frank Stenger,*Numerical methods based on Whittaker cardinal, or sinc functions*, SIAM Rev.**23**(1981), no. 2, 165–224. MR**618638**, https://doi.org/10.1137/1023037**[40]**Frank Stenger,*Explicit, nearly optimal, linear rational approximation with preassigned poles*, Math. Comp.**47**(1986), no. 175, 225–252. MR**842132**, https://doi.org/10.1090/S0025-5718-1986-0842132-0**[41]**Andrey N. Tikhonov and Vasiliy Y. Arsenin,*Solutions of ill-posed problems*, V. H. Winston & Sons, Washington, D.C.: John Wiley & Sons, New York-Toronto, Ont.-London, 1977. Translated from the Russian; Preface by translation editor Fritz John; Scripta Series in Mathematics. MR**0455365****[42]**Manfred R. Trummer,*A method for solving ill-posed linear operator equations*, SIAM J. Numer. Anal.**21**(1984), no. 4, 729–737. MR**749367**, https://doi.org/10.1137/0721049**[43]**D. V. Widder,*The Laplace Transform*, Princeton Univ. Press, Princeton, N.J., 1936.**[44]**V. Zakian, "Numerical inversion of Laplace transform,"*Electron. Lett.*, v. 5, 1969, pp. 120-121.**[45]**V. Zakian, "Optimization of numerical inversion of Laplace transform,"*Electron. Lett.*, v. 6, 1970, pp. 677-679.**[46]**V. Zakian and D. R. Gannon,*Least-squares optimisation of numerical inversion of Laplace transforms*, Electron. Lett.**7**(1971), 70–71. MR**0319370**, https://doi.org/10.1049/el:19710048

Retrieve articles in *Mathematics of Computation*
with MSC:
65R10,
44A10

Retrieve articles in all journals with MSC: 65R10, 44A10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0983558-7

Keywords:
Laplace transform,
inversion

Article copyright:
© Copyright 1989
American Mathematical Society