The validity of Shapiro's cyclic inequality

Author:
B. A. Troesch

Journal:
Math. Comp. **53** (1989), 657-664

MSC:
Primary 26D15

DOI:
https://doi.org/10.1090/S0025-5718-1989-0983563-0

MathSciNet review:
983563

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A cyclic sum is formed with *N* components of a vector x, where in the sum , , and where all denominators are positive and all numerators are nonnegative. It is known that there exist vectors x for which if and even, and if . It has been proved that the inequality holds for . Although it has been conjectured repeatedly that the inequality also holds for odd *N* between 15 and 23, this has apparently never been proved. Here we will confirm that the inequality indeed holds for all odd . This settles the question for all *N*.

**[1]**P. H. Diananda,*On a cyclic sum*, Proc. Glasgow Math. Assoc.**6**(1963), 11–13 (1963). MR**0150084****[2]**P. H. Diananda,*A cyclic inequality and an extension of it. II*, Proc. Edinburgh Math. Soc. (2)**13**(1962/1963), 143–152. MR**0148831**, https://doi.org/10.1017/S0013091500014711**[3]**D. Ž. Djoković,*Sur une inégalité*, Proc. Glasgow Math. Assoc.**6**(1963), 1–10 (1963) (French). MR**0150083****[4]**V. G. Drinfel′d,*A certain cyclic inequality*, Mat. Zametki**9**(1971), 113–119 (Russian). MR**0280660****[5]**J. Lambek and L. Moser,*Rational analogues of the logarithm function*, Math. Gaz.**40**(1956), 5–7. MR**0075977**, https://doi.org/10.2307/3610258**[6]**E. K. Godunova and V. I. Levin,*A cyclic sum with twelve terms*, Mat. Zametki**19**(1976), no. 6, 873–885 (Russian). MR**0424578****[7]**J. C. Lagarias, "The van der Waerden conjecture: Two Soviet solutions,"*Notices Amer. Math. Soc.*, v. 29, 1982, pp. 130-133.**[8]**D. S. Mitrinović,*Analytic inequalities*, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. Die Grundlehren der mathematischen Wissenschaften, Band 165. MR**0274686****[9]**Pedro Nowosad,*Isoperimetric eigenvalue problems in algebras*, Comm. Pure Appl. Math.**21**(1968), 401–465. MR**0238087**, https://doi.org/10.1002/cpa.3160210502**[10]**R. A. Rankin,*A cyclic inequality*, Proc. Edinburgh Math. Soc. (2)**12**(1960/1961), 139–147. MR**0130334**, https://doi.org/10.1017/S0013091500002777**[11]**J. L. Searcy and B. A. Troesch,*A cyclic inequality and a related eigenvalue problem*, Pacific J. Math.**81**(1979), no. 1, 217–226. MR**543745****[12]**H. S. Shapiro, Richard Bellman, D. J. Newman, W. E. Weissblum, H. R. Smith, and H. S. M. Coxeter,*Advanced Problems and Solutions: Problems for Solution: 4603-4607*, Amer. Math. Monthly**61**(1954), no. 8, 571–572. MR**1528827**, https://doi.org/10.2307/2307617**[13]**B. A. Troesch,*The shooting method applied to a cyclic inequality*, Math. Comp.**34**(1980), no. 149, 175–184. MR**551296**, https://doi.org/10.1090/S0025-5718-1980-0551296-2**[14]**B. A. Troesch,*On Shapiro’s cyclic inequality for 𝑁=13*, Math. Comp.**45**(1985), no. 171, 199–207. MR**790653**, https://doi.org/10.1090/S0025-5718-1985-0790653-0

Retrieve articles in *Mathematics of Computation*
with MSC:
26D15

Retrieve articles in all journals with MSC: 26D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0983563-0

Keywords:
Cyclic inequality,
cyclic sum,
minimization

Article copyright:
© Copyright 1989
American Mathematical Society