Error and stability analysis of boundary methods for elliptic problems with interfaces

Authors:
Zi Cai Li and Rudolf Mathon

Journal:
Math. Comp. **54** (1990), 41-61

MSC:
Primary 65N10; Secondary 65N30

MathSciNet review:
990600

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In boundary methods, piecewise particular solutions are employed to solve a given elliptic equation within subdomains of some region of interest. A boundary approximation is then obtained by satisfying the interior and exterior boundary conditions in a least squares sense. In this paper, we examine convergence, derive error norm bounds for approximate solutions and conduct a stability analysis of the associated algebraic problem. The aim of this analysis is to help choosing good partitions of subdomains. Finally, numerical experiments are carried out for a typical interface problem, demonstrating that very accurate solutions can be obtained while at the same time keeping small the condition numbers of the associated coefficient matrices.

**[1]**Milton Abramowitz and Irene A. Stegun (eds.),*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR**1225604****[2]**A. K. Aziz, M. R. Dorr, and R. B. Kellogg,*A new approximation method for the Helmholtz equation in an exterior domain*, SIAM J. Numer. Anal.**19**(1982), no. 5, 899–908. MR**672566**, 10.1137/0719065**[3]**A. K. Aziz, R. B. Kellogg, and A. B. Stephens,*Least squares methods for elliptic systems*, Math. Comp.**44**(1985), no. 169, 53–70. MR**771030**, 10.1090/S0025-5718-1985-0771030-5**[4]**Felix E. Browder,*Approximation by solutions of partial differential equations*, Amer. J. Math.**84**(1962), 134–160. MR**0178247****[5]**E. W. Cheney,*Introduction to approximation theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0222517****[6]**Stanley C. Eisenstat,*On the rate of convergence of the Bergman-Vekua method for the numerical solution of elliptic boundary value problems*, SIAM J. Numer. Anal.**11**(1974), 654–680. MR**0375805****[7]**I. S. Gradshteyn and I. M. Ryzhik,*Table of integrals, series, and products*, Academic Press, New York, 1980.**[8]**Houde Han,*The numerical solutions of interface problems by infinite element method*, Numer. Math.**39**(1982), no. 1, 39–50. MR**664535**, 10.1007/BF01399310**[9]**R. B. Kellogg,*Singularities in interface problems*, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 351–400. MR**0289923****[10]**R. B. Kellogg,*Higher order singularities for interface problems*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 589–602. MR**0433926****[11]**-,*On the Poisson equations with intersecting interface*, Applicable Anal.**4**(1975), 101-129.**[12]**Zi Cai Li,*Numerical methods for elliptic boundary value problems with singularities*, Appl. Math. Notes**12**(1987), no. 1-2, 14–22. MR**909547****[13]**Zi Cai Li,*A note on Kellogg’s eigenfunctions of a periodic Sturm-Liouville system*, Appl. Math. Lett.**1**(1988), no. 2, 123–126. MR**953369**, 10.1016/0893-9659(88)90055-9**[14]**Zi Cai Li,*A nonconforming combination for solving elliptic problems with interfaces*, J. Comput. Phys.**80**(1989), no. 2, 288–313. MR**1008390**, 10.1016/0021-9991(89)90101-0**[15]**Zi Cai Li and Rudolf Mathon,*Boundary approximation methods for solving elliptic problems on unbounded domains*, J. Comput. Phys.**89**(1990), no. 2, 414–431. MR**1067051**, 10.1016/0021-9991(90)90150-Y**[16]**Zi Cai Li, Rudolf Mathon, and Pavol Sermer,*Boundary methods for solving elliptic problems with singularities and interfaces*, SIAM J. Numer. Anal.**24**(1987), no. 3, 487–498. MR**888746**, 10.1137/0724035**[17]**S. L. Sobolev,*Application of functional analysis in mathematical physics*, Transl. Math. Monographs, vol. 7, Amer. Math. Soc., Providence, R.I., 1963.**[18]**Gilbert Strang and George J. Fix,*An analysis of the finite element method*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR**0443377****[19]**R. W. Thatcher,*The use of infinite grid refinements at singularities in the solution of Laplace’s equation*, Numer. Math.**25**(1975/76), no. 2, 163–178. MR**0400748****[20]**R. W. Thatcher,*On the finite element method for unbounded regions*, SIAM J. Numer. Anal.**15**(1978), no. 3, 466–477. MR**0471378****[21]**A. N. Tikhonov and A. A. Samarskii,*Equations of mathematical physics*, Translated by A. R. M. Robson and P. Basu; translation edited by D. M. Brink. A Pergamon Press Book, The Macmillan Co., New York, 1963. MR**0165209**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N10,
65N30

Retrieve articles in all journals with MSC: 65N10, 65N30

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1990-0990600-4

Keywords:
Boundary methods,
elliptic boundary value problem,
interface,
singularity

Article copyright:
© Copyright 1990
American Mathematical Society