On the stability and convergence of higher-order mixed finite element methods for second-order elliptic problems

Author:
Manil Suri

Journal:
Math. Comp. **54** (1990), 1-19

MSC:
Primary 65N30; Secondary 65N10

MathSciNet review:
990603

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the use of higher-order mixed methods for second-order elliptic problems by establishing refined stability and convergence estimates which take into account both the mesh size *h* and polynomial degree *p*. Our estimates yield asymptotic convergence rates for the *p*- and *h -- p*-versions of the finite element method. They also describe more accurately than previously proved estimates the increased rate of convergence expected when the *h*-version is used with higher-order polynomials. For our analysis, we choose the Raviart-Thomas and the Brezzi-Douglas-Marini elements and establish optimal rates of convergence in both *h* and *p* (up to arbitrary ).

**[1]**I. Babuška,*The 𝑝 and ℎ-𝑝 versions of the finite element method: the state of the art*, Finite elements (Hampton, VA, 1986) ICASE/NASA LaRC Ser., Springer, New York, 1988, pp. 199–239. MR**964487****[2]**-,*Are high degree elements preferable? Some aspects of the h and h -- p versions of the finite element method*, in Numerical Techniques for Engineering Analysis and Design, Vol. I (G. N. Pande and J. Middleton, eds.), Martinus Nijhoff Publishers, 1987.**[3]**Ivo Babuška and Milo R. Dorr,*Error estimates for the combined ℎ and 𝑝 versions of the finite element method*, Numer. Math.**37**(1981), no. 2, 257–277. MR**623044**, 10.1007/BF01398256**[4]**I. Babuška and T. Scapolla,*The computational aspects of the h, p and h -- p versions of the finite element method*, in Advances in Computer Methods for PDEs-VI (R. Vichnevetsky and R. S. Stepleman, eds.), IMACS, 1987.**[5]**I. Babuška and Manil Suri,*The ℎ-𝑝 version of the finite element method with quasi-uniform meshes*, RAIRO Modél. Math. Anal. Numér.**21**(1987), no. 2, 199–238 (English, with French summary). MR**896241****[6]**I. Babuška and Manil Suri,*The treatment of nonhomogeneous Dirichlet boundary conditions by the 𝑝-version of the finite element method*, Numer. Math.**55**(1989), no. 1, 97–121. MR**987158**, 10.1007/BF01395874**[7]**I. Babuška and B. A. Szabo,*Lecture notes on finite element analysis*, In preparation.**[8]**I. Babuška, B. A. Szabo, and I. N. Katz,*The 𝑝-version of the finite element method*, SIAM J. Numer. Anal.**18**(1981), no. 3, 515–545. MR**615529**, 10.1137/0718033**[9]**Franco Brezzi, Jim Douglas Jr., and L. D. Marini,*Two families of mixed finite elements for second order elliptic problems*, Numer. Math.**47**(1985), no. 2, 217–235. MR**799685**, 10.1007/BF01389710**[10]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[11]**S. Jensen and M. Vogelius,*Divergence stability in connection with the 𝑝-version of the finite element method*, RAIRO Modél. Math. Anal. Numér.**24**(1990), no. 6, 737–764 (English, with French summary). MR**1080717****[12]**Claes Johnson and Vidar Thomée,*Error estimates for some mixed finite element methods for parabolic type problems*, RAIRO Anal. Numér.**15**(1981), no. 1, 41–78 (English, with French summary). MR**610597****[13]**J. L. Lions and E. Magenes,*Non-homogeneous boundary value problems and applications*I, Springer-Verlag, Berlin and New York, 1972.**[14]**P.-A. Raviart and J. M. Thomas,*A mixed finite element method for 2nd order elliptic problems*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292–315. Lecture Notes in Math., Vol. 606. MR**0483555****[15]**L. R. Scott and M. Vogelius,*Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials*, RAIRO Modél. Math. Anal. Numér.**19**(1985), no. 1, 111–143 (English, with French summary). MR**813691****[16]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65N10

Retrieve articles in all journals with MSC: 65N30, 65N10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1990-0990603-X

Article copyright:
© Copyright 1990
American Mathematical Society