Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On the stability and convergence of higher-order mixed finite element methods for second-order elliptic problems

Author: Manil Suri
Journal: Math. Comp. 54 (1990), 1-19
MSC: Primary 65N30; Secondary 65N10
MathSciNet review: 990603
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the use of higher-order mixed methods for second-order elliptic problems by establishing refined stability and convergence estimates which take into account both the mesh size h and polynomial degree p. Our estimates yield asymptotic convergence rates for the p- and h -- p-versions of the finite element method. They also describe more accurately than previously proved estimates the increased rate of convergence expected when the h-version is used with higher-order polynomials. For our analysis, we choose the Raviart-Thomas and the Brezzi-Douglas-Marini elements and establish optimal rates of convergence in both h and p (up to arbitrary $ \varepsilon > 0$).

References [Enhancements On Off] (What's this?)

  • [1] I. Babuška, The 𝑝 and ℎ-𝑝 versions of the finite element method: the state of the art, Finite elements (Hampton, VA, 1986) ICASE/NASA LaRC Ser., Springer, New York, 1988, pp. 199–239. MR 964487
  • [2] -, Are high degree elements preferable? Some aspects of the h and h -- p versions of the finite element method, in Numerical Techniques for Engineering Analysis and Design, Vol. I (G. N. Pande and J. Middleton, eds.), Martinus Nijhoff Publishers, 1987.
  • [3] Ivo Babuška and Milo R. Dorr, Error estimates for the combined ℎ and 𝑝 versions of the finite element method, Numer. Math. 37 (1981), no. 2, 257–277. MR 623044, 10.1007/BF01398256
  • [4] I. Babuška and T. Scapolla, The computational aspects of the h, p and h -- p versions of the finite element method, in Advances in Computer Methods for PDEs-VI (R. Vichnevetsky and R. S. Stepleman, eds.), IMACS, 1987.
  • [5] I. Babuška and Manil Suri, The ℎ-𝑝 version of the finite element method with quasi-uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 2, 199–238 (English, with French summary). MR 896241
  • [6] I. Babuška and Manil Suri, The treatment of nonhomogeneous Dirichlet boundary conditions by the 𝑝-version of the finite element method, Numer. Math. 55 (1989), no. 1, 97–121. MR 987158, 10.1007/BF01395874
  • [7] I. Babuška and B. A. Szabo, Lecture notes on finite element analysis, In preparation.
  • [8] I. Babuška, B. A. Szabo, and I. N. Katz, The 𝑝-version of the finite element method, SIAM J. Numer. Anal. 18 (1981), no. 3, 515–545. MR 615529, 10.1137/0718033
  • [9] Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235. MR 799685, 10.1007/BF01389710
  • [10] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • [11] S. Jensen and M. Vogelius, Divergence stability in connection with the 𝑝-version of the finite element method, RAIRO Modél. Math. Anal. Numér. 24 (1990), no. 6, 737–764 (English, with French summary). MR 1080717
  • [12] Claes Johnson and Vidar Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér. 15 (1981), no. 1, 41–78 (English, with French summary). MR 610597
  • [13] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I, Springer-Verlag, Berlin and New York, 1972.
  • [14] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292–315. Lecture Notes in Math., Vol. 606. MR 0483555
  • [15] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111–143 (English, with French summary). MR 813691
  • [16] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N10

Retrieve articles in all journals with MSC: 65N30, 65N10

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society