Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Weighted inf-sup condition and pointwise error estimates for the Stokes problem

Authors: Ricardo G. Durán and Ricardo H. Nochetto
Journal: Math. Comp. 54 (1990), 63-79
MSC: Primary 65N30; Secondary 65N15, 76-08, 76D07
MathSciNet review: 995211
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Convergence of mixed finite element approximations to the Stokes problem in the primitive variables is examined in maximum norm. Quasioptimal pointwise error estimates are derived for discrete spaces satisfying a weighted inf-sup condition similar to the Babuška -Brezzi condition. The usual techniques employed to prove the inf-sup condition in energy norm can be easily extended to the present situation, thus providing several examples to our abstract framework. The popular Taylor-Hood finite element is the most relevant one.

References [Enhancements On Off] (What's this?)

  • [1] D. N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), 337-344. MR 799997 (86m:65136)
  • [2] D. N. Arnold, L. R. Scott and M. Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa 15 (1988), 169-192. MR 1007396 (91i:35043)
  • [3] I. Babuška, Error bounds for the finite element method, Numer. Math. 16 (1971), 322-333. MR 0288971 (44:6166)
  • [4] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), 211-224. MR 549450 (81g:65145)
  • [5] C. Bernardi and B. Raugel, Analysis of some finite elements for the Stokes problem, Math. Comp. 44 (1985), 71-79. MR 771031 (86b:65119)
  • [6] J. M. Boland and R. A. Nicolaides, Stability of some elements under divergence constraint, SIAM J. Numer. Anal. 20 (1983), 722-731. MR 708453 (85e:65046)
  • [7] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numér. 8 (1974), 129-151. MR 0365287 (51:1540)
  • [8] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [9] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, RAIRO Anal. Numér. 7, R-3 (1973), 33-75. MR 0343661 (49:8401)
  • [10] R. G. Durán and R. H. Nochetto, Pointwise accuracy of a Petrov-Galerkin approximation to the Stokes problem, SIAM J. Numer. Anal. 26 (1989) (to appear).
  • [11] R. G. Durán, R. H. Nochetto and J. Wang, Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2 -- D, Math. Comp. 51 (1988), 491-506. MR 935076 (89b:65261)
  • [12] R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), 249-277. MR 592753 (82j:65076)
  • [13] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér. 11 (1977), 341-354. MR 0464543 (57:4473)
  • [14] L. Gastaldi and R. H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations, RAIRO Modél. Math. Anal. Numér. 23 (1989), 103-128. MR 1015921 (91b:65125)
  • [15] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations: theory and applications, Springer-Verlag, Berlin and Heidelberg, 1986. MR 851383 (88b:65129)
  • [16] R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon, J. Funct. Anal. 21 (1976), 397-431. MR 0404849 (53:8649)
  • [17] F. Natterer, Über die punktweise Konvergenz finiter Elemente, Numer. Math. 25 (1975), 67-78. MR 0474884 (57:14514)
  • [18] J. A. Nitsche, $ {L^\infty }$-convergence of finite element approximations, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math., vol. 606, Springer-Verlag, New York, 1977, pp. 261-274. MR 0488848 (58:8351)
  • [19] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372. MR 0463908 (57:3846)
  • [20] C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element method, Comput. & Fluids 1 (1973), 73-100. MR 0339677 (49:4435)
  • [21] R. Temam, Navier-Stokes equations, North Holland, Amsterdam, 1984.
  • [22] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numér. 18 (1984), 175-182. MR 743884 (85i:65156)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N15, 76-08, 76D07

Retrieve articles in all journals with MSC: 65N30, 65N15, 76-08, 76D07

Additional Information

Keywords: Stokes problem, mixed finite elements, pointwise error estimates
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society