Error analysis of some finite element methods for the Stokes problem

Author:
Rolf Stenberg

Journal:
Math. Comp. **54** (1990), 495-508

MSC:
Primary 65N30; Secondary 65N15

DOI:
https://doi.org/10.1090/S0025-5718-1990-1010601-X

MathSciNet review:
1010601

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the optimal order of convergence for some two-dimensional finite element methods for the Stokes equations. First we consider methods of the Taylor-Hood type: the triangular element and the , , family of quadrilateral elements. Then we introduce two new low-order methods with piecewise constant approximations for the pressure. The analysis is performed using our macroelement technique, which is reviewed in a slightly altered form.

**[1]**I. Babuška,*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1973), 179-192. MR**0359352 (50:11806)****[2]**I. Babuška and A. Aziz,*Survey lectures on the mathematical foundations of the finite element method*, in The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A. Aziz, ed.), Academic Press, New York, 1973, pp. 5-359.**[3]**I. Babuška, J. Osborn, and J. Pitkäranta,*Analysis of mixed methods using mesh dependent norms*, Math. Comp.**35**(1980), 1039-1062. MR**583486 (81m:65166)****[4]**M. Bercovier and O. Pironneau,*Error estimates for finite element solution of the Stokes problem in the primitive variables*, Numer. Math.**33**(1979), 211-224. MR**549450 (81g:65145)****[5]**J. Boland and R. Nicolaides,*Stability of finite elements under divergence constraints*, SIAM J. Numer. Anal.**20**(1983), 722-731. MR**708453 (85e:65046)****[6]**F. Brezzi,*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers*, RAIRO Sér. Rouge**8**(1974), 129-151. MR**0365287 (51:1540)****[7]**F. Brezzi and R. S. Falk,*Stability of a higher order Hood-Taylor method*, SIAM J. Numer. Anal. (to appear). MR**1098408 (91m:65272)****[8]**P. G. Ciarlet,*The finite element method for elliptic problems*, North-Holland, 1978. MR**0520174 (58:25001)****[9]**P. Clément,*Approximation by finite elements using local regularization*, RAIRO Sér. Rouge**8**(1975), 77-84. MR**0400739 (53:4569)****[10]**M. Fortin,*Old and new finite elements for incompressible flows*, Internat. J. Numer. Methods Fluids**1**(1981), 347-364. MR**633812 (83a:76015)****[11]**V. Girault, and P. A. Raviart,*Finite element methods for Navier-Stokes equations. Theory and algorithms*, Springer, 1986. MR**851383 (88b:65129)****[12]**J. Pitkäranta and R. Stenberg,*Analysis of some mixed finite element methods for plane elasticity equations*, Math. Comp.**41**(1983), 399-423. MR**717693 (85b:65099)****[13]**R. Scott and M. Vogelius,*Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials*, RAIRO**19**(1985), 111-143. MR**813691 (87i:65190)****[14]**R. Stenberg,*Analysis of mixed finite element methods for the Stokes problem: A unified approach*, Math. Comp.**42**(1984), 9-23. MR**725982 (84k:76014)****[15]**-,*On some three-dimensional finite elements for incompressible media*, Comput. Methods Appl. Mech. Engrg.**63**(1987), 261-269. MR**911612 (88i:73050)****[16]**R. Verfürth,*Error estimates for a mixed finite element approximation of the Stokes*equations RAIRO Anal. Numér.**18**(1984), 175-182. MR**743884 (85i:65156)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65N15

Retrieve articles in all journals with MSC: 65N30, 65N15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1990-1010601-X

Article copyright:
© Copyright 1990
American Mathematical Society