Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Error analysis of some finite element methods for the Stokes problem


Author: Rolf Stenberg
Journal: Math. Comp. 54 (1990), 495-508
MSC: Primary 65N30; Secondary 65N15
DOI: https://doi.org/10.1090/S0025-5718-1990-1010601-X
MathSciNet review: 1010601
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the optimal order of convergence for some two-dimensional finite element methods for the Stokes equations. First we consider methods of the Taylor-Hood type: the triangular $ {P_3} - {P_2}$ element and the $ {Q_k} - {Q_{k - 1}},$, $ k \geq 2$, family of quadrilateral elements. Then we introduce two new low-order methods with piecewise constant approximations for the pressure. The analysis is performed using our macroelement technique, which is reviewed in a slightly altered form.


References [Enhancements On Off] (What's this?)

  • [1] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), 179-192. MR 0359352 (50:11806)
  • [2] I. Babuška and A. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A. Aziz, ed.), Academic Press, New York, 1973, pp. 5-359.
  • [3] I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), 1039-1062. MR 583486 (81m:65166)
  • [4] M. Bercovier and O. Pironneau, Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), 211-224. MR 549450 (81g:65145)
  • [5] J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints, SIAM J. Numer. Anal. 20 (1983), 722-731. MR 708453 (85e:65046)
  • [6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Sér. Rouge 8 (1974), 129-151. MR 0365287 (51:1540)
  • [7] F. Brezzi and R. S. Falk, Stability of a higher order Hood-Taylor method, SIAM J. Numer. Anal. (to appear). MR 1098408 (91m:65272)
  • [8] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, 1978. MR 0520174 (58:25001)
  • [9] P. Clément, Approximation by finite elements using local regularization, RAIRO Sér. Rouge 8 (1975), 77-84. MR 0400739 (53:4569)
  • [10] M. Fortin, Old and new finite elements for incompressible flows, Internat. J. Numer. Methods Fluids 1 (1981), 347-364. MR 633812 (83a:76015)
  • [11] V. Girault, and P. A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer, 1986. MR 851383 (88b:65129)
  • [12] J. Pitkäranta and R. Stenberg, Analysis of some mixed finite element methods for plane elasticity equations, Math. Comp. 41 (1983), 399-423. MR 717693 (85b:65099)
  • [13] R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO $ {{\text{M}}^2}{\text{AN}}$ 19 (1985), 111-143. MR 813691 (87i:65190)
  • [14] R. Stenberg, Analysis of mixed finite element methods for the Stokes problem: A unified approach, Math. Comp. 42 (1984), 9-23. MR 725982 (84k:76014)
  • [15] -, On some three-dimensional finite elements for incompressible media, Comput. Methods Appl. Mech. Engrg. 63 (1987), 261-269. MR 911612 (88i:73050)
  • [16] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations RAIRO Anal. Numér. 18 (1984), 175-182. MR 743884 (85i:65156)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N15

Retrieve articles in all journals with MSC: 65N30, 65N15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1010601-X
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society