Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An FFT extension to the $ P-1$ factoring algorithm


Authors: Peter L. Montgomery and Robert D. Silverman
Journal: Math. Comp. 54 (1990), 839-854
MSC: Primary 11Y05
DOI: https://doi.org/10.1090/S0025-5718-1990-1011444-3
MathSciNet review: 1011444
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: J. M. Pollard, in 1974, presented the $ P - 1$ integer factoring algorithm. His paper couched the algorithm in theoretical terms based upon use of Fast Fourier Transform techniques, but he was unable to say whether the method could be made practical. We discuss the mathematical basis of the algorithm and show how it can work in practice. The practical implementation depends, for its success, upon the use of Residue Number Systems. We also present an open problem as to how the method could be made to work for the Elliptic Curve factoring algorithm.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer algorithms, Addison-Wesley, Reading, MA, 1974. MR 0413592 (54:1706)
  • [2] A. Borodin and I. Munro, The computational complexity of algebraic and numeric problems, American Elsevier, New York, 1975. MR 0468309 (57:8145)
  • [3] R. P. Brent, The first occurrence of certain large prime gaps, Math. Comp. 35 (1980), 1435-1436. MR 583521 (81g:10002)
  • [4] R. P. Brent, Some integer factorization algorithms using elliptic curves, Research Report CMA-R32-85, The Center for Mathematical Analysis, The Australian National University, 1985.
  • [5] J. Brillhart, P. L. Montgomery, and R. D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), 251-259. MR 917832 (89h:11002)
  • [6] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of $ {b^n} \pm 1, b = 2, 3, 5, 6, 7, 10, 11, 12$ up to high powers, (2nd ed.) Contemporary Mathematics, vol. 22, Amer. Math. Soc., Providence, RI, 1988. MR 996414 (90d:11009)
  • [7] A. M. Despain, A. M. Peterson, O. S. Rothaus, and E. H. Wold, Fast Fourier transform processors using Gaussian residue arithmetic, J. Parallel & Distributed Comp. 2 (1985), 219-237.
  • [8] D. E. Knuth, The art of computer programming, Vol. II, Seminumerical algorithms, Addison-Wesley, Reading, MA, 1981. MR 633878 (83i:68003)
  • [9] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 649-673. MR 916721 (89g:11125)
  • [10] J. H. McClellan and C. M. Rader, Number theory in digital signal processing, Prentice-Hall, Englewood Cliffs, NJ, 1979. MR 723867
  • [11] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48 (1987), 243-264. MR 866113 (88e:11130)
  • [12] A. Norton and A. J. Silberger, Parallelization and performance analysis of the Cooley-Tukey FFT algorithm for shared memory architectures, IEEE Trans. Comp. C-36 (1987), 581-591.
  • [13] H. J. Nussbaumer, Fast Fourier transforms and convolution algorithms, Springer-Verlag, New York, 1982. MR 606376 (83e:65219)
  • [14] J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 5 (1974), 521-528. MR 0354514 (50:6992)
  • [15] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210 (87g:11070)
  • [16] H. C. Williams, A $ p + 1$ method of factoring, Math. Comp. 39 (1982), 225-234. MR 658227 (83h:10016)
  • [17] J. Young and A. Potler, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224. MR 947470 (89f:11019)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y05

Retrieve articles in all journals with MSC: 11Y05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1011444-3
Keywords: Convolutions, FFT, residue number systems, smooth groups, factorization
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society