Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Symmetrizable finite difference operators


Author: Bruce A. Wade
Journal: Math. Comp. 54 (1990), 525-543
MSC: Primary 65M10
DOI: https://doi.org/10.1090/S0025-5718-1990-1011447-9
MathSciNet review: 1011447
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of a symmetrizable finite difference operator and prove that such operators are stable. We then present some sufficient conditions for symmetrizability. One of these extends H.-O. Kreiss' theorem on dissipative difference schemes for hyperbolic equations to a more general case with full (x, t)-variable coefficients.


References [Enhancements On Off] (What's this?)

  • [1] K. P. Bube and J. C. Strikwerda, Interior regularity estimates for elliptic systems of difference equations, SIAM J. Numer. Anal. 20 (1983), 653-670. MR 708449 (84m:65118)
  • [2] J. Chazarain and A. Piriou, Introduction to the theory of linear partial differential equations, North-Holland, New York, 1982. MR 678605 (83j:35001)
  • [3] T. Kato, Perturbation theory for linear operators, second ed., Springer-Verlag, New York, 1976. MR 0407617 (53:11389)
  • [4] H.-O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math. 17 (1964), 335-353. MR 0166937 (29:4210)
  • [5] -, Über sachgemässe Cauchyprobleme, Math. Scand. 13 (1963), 109-128. MR 0168921 (29:6177)
  • [6] P. D. Lax and L. Nirenberg, On stability for difference schemes: a sharp form of Gårding's inequality, Comm. Pure Appl. Math. 19 (1966), 473-492. MR 0206534 (34:6352)
  • [7] D. Michelson, Stability theory of difference approximations for multidimensional initial-boundary value problems, Math. Comp. 40 (1983), 1-45. MR 679433 (84d:65068)
  • [8] J. J. H. Miller, On power bounded operators and operators satisfying a resolvent condition, Numer. Math. 10 (1967), 389-396. MR 0220080 (36:3147)
  • [9] B. Parlett, Accuracy and dissipation in difference schemes, Comm. Pure Appl. Math. 19 (1966), 111-123. MR 0196957 (33:5141)
  • [10] R. D. Richtmyer and K. W. Morton, Difference methods for initial value problems, second ed., Wiley-Interscience, New York, 1967. MR 0220455 (36:3515)
  • [11] H. Shintani and K. Tomoeda, Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficients, Hiroshima J. Math. 7 (1977), 309-378. MR 0448930 (56:7235)
  • [12] J. C. Strikwerda and B. A. Wade, An extension of the Kreiss Matrix Theorem, SIAM J. Numer. Anal. 25 (1988), 1272-1278. MR 972453 (89m:15018)
  • [13] E. Tadmor, The equivalence of $ {L_2}$-stability, the resolvent condition, and strict H-stability, Linear Algebra Appl. 41 (1981), 151-159. MR 649723 (84g:15030)
  • [14] M. E. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N. J., 1984.
  • [15] R. Vichnevetsky and J. B. Bowles, Fourer analysis of numerical approximations of hyperbolic equations, Studies in Applied Math., vol. 5, SIAM, Philadelphia, Pa., 1982. MR 675265 (84f:65002)
  • [16] B. A. Wade, Stability and sharp convergence estimates for symmetrizable difference operators, Ph. D. dissertation, University of Wisconsin-Madison, 1987.
  • [17] O. B. Widlund, On the stability of parabolic difference schemes, Math. Comp. 19 (1965), 1-13. MR 0170479 (30:717)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M10

Retrieve articles in all journals with MSC: 65M10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1011447-9
Keywords: Symmetrizer, stability
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society