CORRIGENDA

On p. 225 it was stated that if

\[r(Q) = \text{lcm}(q_j - q_i)_{1 \leq i < j \leq 8}, \]

where \(Q = \{q_1, \ldots, q_8\} \) is a set of eight odd primes with \(q_1 < \cdots < q_8 \), then

- Erdös has conjectured that \(5040 \nmid r(Q) \) for any \(Q \);
- Theorem 1. For every \(Q \), \(5040 \nmid r(Q) \).

Both assertions are wrong. It should have been:

- Erdös has conjectured that \(5040 \leq r(Q) \) for any \(Q \);
- Theorem 1. For every \(Q \), \(5040 \leq r(Q) \).

Actually, this is what is proved in the paper. Indeed, it is possible to find examples of sets \(Q \) for which 5040 does not divide \(r(Q) \). J. Leech has proposed \(r(\{210n + 199, n = 1(1)8\}) = 2^3 3^2 5^2 7^2 \) and R. A. Morris \(r(\{11, 17, 19, 23, 29, 41, 47, 53\}) = 2^3 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \). As a matter of fact, the smallest \(\rho \) for which there exists a set \(Q \) such that \(r(Q) = \rho \) and \(2^3 \| \rho \) is \(\rho = 2^3 3^2 \cdot 5 \cdot 7 \cdot 11 \) with \(Q = (\{17, 19, 23, 29, 37, 41, 47, 59\}) \).

F. Morain

Institut National de Recherche en Informatique et en Automatique (INRIA)
Domaine de Voluceau, B. P. 105
78153 Le Chesnay Cedex (France)
& Département de Mathématiques
Université Claude Bernard
69622 Villeurbanne Cedex (France)
E-mail: morain@inria.inria.fr

* On leave from the French Department of Defense, Délégation Générale pour l’Armement.