Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Convergence of extended Lagrange interpolation

Authors: Giuliana Criscuolo, Giuseppe Mastroianni and Donatella Occorsio
Journal: Math. Comp. 55 (1990), 197-212
MSC: Primary 65D05; Secondary 41A05
MathSciNet review: 1023044
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The authors give a procedure to construct extended interpolation formulae and prove some uniform convergence theorems.

References [Enhancements On Off] (What's this?)

  • [1] A. Bellen, Metodi di proiezioni estesi, Boll. Un. Ital. Suppl. 1 (1980), 239-251. MR 677700 (83k:65046)
  • [2] -, A note on mean convergence of Lagrange interpolation, J. Approx. Theory 33 (1981), 85-95. MR 643904 (83e:41007)
  • [3] G. Criscuolo and G. Mastroianni, On the convergence of the Gauss quadrature rules for the Cauchy principal value integrals, Ricerche Mat. 35 (1986), 45-60. MR 889859 (88h:65055)
  • [4] -, Mean and uniform convergence of quadrature rules for evaluating the finite Hilbert transform, J. Approx. Theory (to appear).
  • [5] W. Gautschi, A survey of Gauss-Christoffel quadrature formulae, E. B. Christoffel: The Influence of his Work on Mathematics and the Physical Sciences (P. L. Butzer and F. Fehér, eds.), Birkhäuser, Basel, 1981, pp. 72-147. MR 661060 (83g:41031)
  • [6] -, Gauss-Kronrod quadrature--A survey, Numerical Methods and Approximation Theory III (G. V. Milovanović, ed.), Prosveta, Niš, 1988, pp. 39-66.
  • [7] H. Gonska and E. Hinnemann, Punktweise Abschätzungen zur Approximation durch algebraische Polynome, Acta Math. Hungar. 46 (1985), 243-254. MR 832716
  • [8] A. Maté, P. Nevai, and V. Totik, Extensions of Szegö's theory of orthogonal polynomials. II, Constr. Approx. 3 (1987), 51-72. MR 892168 (88m:42044a)
  • [9] G. Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24 (1982), 137-158. MR 652464 (83d:65067)
  • [10] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. No. 213 (1979). MR 519926 (80k:42025)
  • [11] -, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc. 282 (1984), 669-698. MR 732113 (85c:41009)
  • [12] P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986), 3-167. MR 862231 (88b:42032)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D05, 41A05

Retrieve articles in all journals with MSC: 65D05, 41A05

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society