Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Convergence properties of a class of product formulas for weakly singular integral equations


Authors: Giuliana Criscuolo, Giuseppe Mastroianni and Giovanni Monegato
Journal: Math. Comp. 55 (1990), 213-230
MSC: Primary 65R20; Secondary 45L05
MathSciNet review: 1023045
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We examine the convergence of product quadrature formulas of interpolatory type, based on the zeros of certain generalized Jacobi polynomials, for the discretization of integrals of the type

$\displaystyle \int_{ - 1}^1 {K(x,y)f(x)\,dx,} \quad - 1 \leq y \leq 1,$

where the kernel $ K(x,y)$ is weakly singular and the function $ f(x)$ has singularities only at the endpoints $ \pm 1$. In particular, when $ K(x,y) = \log \vert x - y\vert$, $ K(x,y) = \vert x - y{\vert^v}$, $ v > - 1$, and $ f(x)$ has algebraic singularities of the form $ {(1 \pm x)^\sigma }$, $ \sigma > - 1$, we prove that the uniform rate of convergence of the rules is $ O({m^{ - 2 - 2\sigma }}{\log ^2}m)$ in the case of the first kernel, and $ O({m^{ - 2 - 2\sigma - 2v}}\log m)$ if $ v \leq 0$, or $ O({m^{ - 2 - 2\sigma }}\log m)$ if $ v > 0$, for the second, where m is the number of points in the quadrature rule.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65R20, 45L05

Retrieve articles in all journals with MSC: 65R20, 45L05


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1990-1023045-1
PII: S 0025-5718(1990)1023045-1
Article copyright: © Copyright 1990 American Mathematical Society