Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Boundedness of dispersive difference schemes


Authors: Donald Estep, Michael Loss and Jeffrey Rauch
Journal: Math. Comp. 55 (1990), 55-87
MSC: Primary 65M12
DOI: https://doi.org/10.1090/S0025-5718-1990-1023047-5
MathSciNet review: 1023047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The pointwise behavior of dispersive difference schemes for the simple wave equation in one dimension is analyzed. If the initial data are in certain Besov spaces, the scheme is shown to be pointwise unbounded. Boundedness is shown when the initial data are of bounded variation.


References [Enhancements On Off] (What's this?)

  • [1] M. Y. T. Apelkrans, On difference schemes for hyperbolic equations with discontinuous initial values, Math. Comp. 22 (1968), 525-539. MR 0233527 (38:1848)
  • [2] V. I. Arnol'd, Singularities of smooth mappings, Russian Math. Surveys 23 (1968), 1-43. MR 0226655 (37:2243)
  • [3] -, Singularity theory, Cambridge Univ. Press, New York, 1981.
  • [4] P. Brenner and V. Thomée, Stability and convergence rates in $ {L^p}$ for certain difference schemes, Math. Scand. 27 (1970), 5-23. MR 0278549 (43:4279)
  • [5] -, Estimates near discontinuities for some difference schemes, Math. Scand. 28 (1971), 329-340. MR 0305613 (46:4743)
  • [6] P. Brenner, V. Thomée, and L. Wahlbin, Besov spaces and applications to difference methods for initial value problems, Springer-Verlag, New York, 1975. MR 0461121 (57:1106)
  • [7] C. Chester, B. Friedman, and F. Ursell, An extension of the method of steepest descents, Proc. Cambridge Philos. Soc. 53 (1957), 599-611. MR 0090690 (19:853a)
  • [8] R. C. Y. Chin, Dispersion and Gibbs phenomenon associated with difference approximations to initial boundary-value problems for hyperbolic equations, J. Comput. Phys. 18 (1975), 233-247. MR 0391530 (52:12351)
  • [9] R. C. Y. Chin and G. W. Hedstrom, A dispersion analysis for difference schemes: Tables of generalized Airy functions, Math. Comp. 32 (1978), 1163-1170. MR 0494982 (58:13753)
  • [10] D. J. Estep, $ {L^\infty }$ bounds for families of translation invariant, $ {L^2}$ stable operators in one dimension, Ph.D. thesis, The University of Michigan, 1987.
  • [11] M. Gollubitsky and V. Guillemin, Stable mappings and their singularities, Springer, New York, 1973. MR 0341518 (49:6269)
  • [12] G. W. Hedstrom, The near-stability of the Lax-Wendroff method, Numer. Math. 7 (1965), 73-77. MR 0174182 (30:4389)
  • [13] -, The rate of convergence of some difference schemes, SIAM J. Numer. Anal. 5 (1968), 363-406. MR 0230489 (37:6051)
  • [14] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta. Math. 104 (1960), 93-140.
  • [15] -, Linear partial differential equations, vol. 1, Springer-Verlag, New York, 1983.
  • [16] F. John, Partial differential equations, 4th ed., Springer-Verlag, New York, 1982.
  • [17] N. Levinson, Transformation of an analytic function of several variables to a canonical form, Duke Math. J. 28 (1961), 345-353. MR 0145101 (26:2636)
  • [18] J. Peetre and V. Thomée, On the rate of convergence for discrete initial value problems, Math. Scand. 21 (1967), 158-176. MR 0255085 (40:8292)
  • [19] R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Interscience, New York, 1967. MR 0220455 (36:3515)
  • [20] W. Rudin, Real and complex analysis, McGraw-Hill, 1974. MR 0344043 (49:8783)
  • [21] E. M. Stein, Oscillatory integrals in Fourier analysis, in Beijing Lectures in Harmonic Analysis (E. M. Stein, ed.), Princeton Univ. Press, Princeton, N.J., 1986, pp. 307-355. MR 864375 (88g:42022)
  • [22] V. Thomée, On the rate of convergence of difference schemes for hyperbolic equations, Numerical Solution of Partial Differential Equations. II (B. Hubbard, ed.), Academic Press, New York, 1971, pp. 585-622.
  • [23] L. N. Trefethen, Group velocity in finite difference schemes, SIAM Rev. 24 (1982), pp. 113-136. MR 652463 (83b:65141)
  • [24] -, Dispersion, dissipation and stability, Numerical Analysis (D. F. Griffiths and G. A. Watson, eds.), Longman, 1986.
  • [25] S. Wainger, Averages and singular integrals over lower dimensional sets, Beijing Lectures in Fourier Analysis (E. M. Stein, ed.), Princeton Univ. Press, Princeton, N.J., 1986, pp. 357-421. MR 864376 (89a:42026)
  • [26] G. B. Whitham, Linear and nonlinear waves, Wiley, New York, 1974. MR 0483954 (58:3905)
  • [27] K. Yosida, Functional analysis, 6th ed., Springer-Verlag, New York, 1982.
  • [28] E. C. Zeeman, Catastrophe theory: Selected papers, Addison-Wesley, Reading, Mass., 1977. MR 0474383 (57:14025)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M12

Retrieve articles in all journals with MSC: 65M12


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1023047-5
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society