Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A direct boundary element method for Signorini problems


Author: Hou De Han
Journal: Math. Comp. 55 (1990), 115-128
MSC: Primary 65N30; Secondary 49J40, 65K05
DOI: https://doi.org/10.1090/S0025-5718-1990-1023048-7
MathSciNet review: 1023048
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a Signorini problem is reduced to a variational inequality on the boundary, and a direct boundary element method is presented for its solution. Furthermore, error estimates for the approximate solutions of Signorini problems are given. In addition, we show that the Signorini problem may be formulated as a saddle-point problem on the boundary.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Aitchison, A. A. Lacey, and M. Shillor, A model for an electropaint process, IMA J. Appl. Math. 33 (1984), 17-31. MR 763400 (86h:78020)
  • [2] I. Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972, pp. 5-359. MR 0421106 (54:9111)
  • [3] H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168. MR 0428137 (55:1166)
  • [4] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972. MR 0464857 (57:4778)
  • [5] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Mem. Accad. Naz. Lincei (8) 7 (1963/64), 91-140. MR 0178631 (31:2888)
  • [6] A. Friedman, Variational principles and free-boundary problems, Wiley, New York, 1982. MR 679313 (84e:35153)
  • [7] R. Glowinski, Numerical methods for nonlinear variational problems, Springer-Verlag, New York, 1984. MR 737005 (86c:65004)
  • [8] R. Glowinski, J.-L. Lions, and R. Trémolières, Numerical analysis of variational inequalities, North-Holland, Amsterdam, 1981. MR 635927 (83k:49014)
  • [9] H. Han, The boundary finite element methods for Signorini problems, Lecture Notes in Math., vol. 1297, Springer-Verlag, Berlin and Heidelberg, 1987, pp. 38-49. MR 929036 (89b:65266)
  • [10] -, The boundary integro-differential equations of elliptic boundary value problems and their numerical solutions, Sci. Sinica Ser. A 29 (1988), 1153-1165. MR 976775 (90a:35055)
  • [11] -, A new class of variational formulations for the coupling of finite and boundary element methods (to appear).
  • [12] G. C. Hsiao and W. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977), 447-481. MR 0461963 (57:1945)
  • [13] M. N. Le Roux, Méthode d'éléments finis pour la résolution numérique de problèmes exterieurs en dimension 2, RAIRO Anal. Numér. 11 (1977), 27-60. MR 0448954 (56:7259)
  • [14] J.-L. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin and Heidelberg, 1971. MR 0271512 (42:6395)
  • [15] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. I, Springer-Verlag, Berlin, 1972.
  • [16] J. C. Nedelec, Integral equations with nonintegrable kernels, Integral Equations Operator Theory 5 (1982), 562-572. MR 665149 (84i:45011)
  • [17] A. Signorini, Sopra alcune questioni di elastostatica, Atti della Società Italiana per il Progresso della Scienza, 1933.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 49J40, 65K05

Retrieve articles in all journals with MSC: 65N30, 49J40, 65K05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1023048-7
Keywords: Signorini problem, variational inequality, boundary finite element method, saddle-point problem
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society