Linear combinations of orthogonal polynomials generating positive quadrature formulas

Author:
Franz Peherstorfer

Journal:
Math. Comp. **55** (1990), 231-241

MSC:
Primary 65D32; Secondary 41A55, 42C05

MathSciNet review:
1023052

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let , , be the polynomials orthogonal on with respect to the positive measure . We give sufficient conditions on the real numbers , , such that the linear combination of orthogonal polynomials has *n* simple zeros in and that the interpolatory quadrature formula whose nodes are the zeros of has positive weights.

**[1]**Richard Askey,*Positive quadrature methods and positive polynomial sums*, Approximation theory, V (College Station, Tex., 1986) Academic Press, Boston, MA, 1986, pp. 1–29. MR**903680****[2]**T. S. Chihara,*An introduction to orthogonal polynomials*, Gordon and Breach Science Publishers, New York-London-Paris, 1978. Mathematics and its Applications, Vol. 13. MR**0481884****[3]**Ya. L. Geronimus,*Polynomials orthogonal on a circle and their applications*, Zapiski Naučno-Issled. Inst. Mat. Meh. Har′kov. Mat. Obšč. (4)**19**(1948), 35–120 (Russian). MR**0036872****[4]**Morris Marden,*Geometry of polynomials*, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR**0225972****[5]**Charles A. Micchelli,*Some positive Cotes numbers for the Chebyshev weight function*, Aequationes Math.**21**(1980), no. 1, 105–109. MR**594098**, 10.1007/BF02189344**[6]**C. A. Micchelli and T. J. Rivlin,*Numerical integration rules near Gaussian quadrature*, Israel J. Math.**16**(1973), 287–299. MR**0366003****[7]**Franz Peherstorfer,*Characterization of positive quadrature formulas*, SIAM J. Math. Anal.**12**(1981), no. 6, 935–942. MR**635246**, 10.1137/0512079**[8]**Franz Peherstorfer,*Characterization of quadrature formula. II*, SIAM J. Math. Anal.**15**(1984), no. 5, 1021–1030. MR**755862**, 10.1137/0515079**[9]**H. J. Schmid,*A note on positive quadrature rules*, Rocky Mountain J. Math.**19**(1989), no. 1, 395–404. Constructive Function Theory—86 Conference (Edmonton, AB, 1986). MR**1016190**, 10.1216/RMJ-1989-19-1-395**[10]**G. Sottas and G. Wanner,*The number of positive weights of a quadrature formula*, BIT**22**(1982), no. 3, 339–352. MR**675668**, 10.1007/BF01934447

Retrieve articles in *Mathematics of Computation*
with MSC:
65D32,
41A55,
42C05

Retrieve articles in all journals with MSC: 65D32, 41A55, 42C05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1990-1023052-9

Keywords:
Quadrature formula,
positive weights,
orthogonal polynomials,
zeros

Article copyright:
© Copyright 1990
American Mathematical Society