Viscous splitting for the unbounded problem of the Navier-Stokes equations

Author:
Lung-An Ying

Journal:
Math. Comp. **55** (1990), 89-113

MSC:
Primary 35Q30; Secondary 65N99, 76D05, 76D07

MathSciNet review:
1023053

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The viscous splitting for the exterior initial-boundary value problems of the Navier-Stokes equations is considered. It is proved that the approximate solutions are uniformly bounded in the space , , and converge with a rate of in the space , where *k* is the length of the time steps.

**[1]**Robert A. Adams,*Sobolev spaces*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR**0450957****[2]**S. Agmon, A. Douglis, and L. Nirenberg,*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I*, Comm. Pure Appl. Math.**12**(1959), 623–727. MR**0125307****[3]**Giovanni Alessandrini, Avron Douglis, and Eugene Fabes,*An approximate layering method for the Navier-Stokes equations in bounded cylinders*, Ann. Mat. Pura Appl. (4)**135**(1983), 329–347 (1984) (English, with Italian summary). MR**750540**, 10.1007/BF01781075**[4]**J. Thomas Beale and Andrew Majda,*Rates of convergence for viscous splitting of the Navier-Stokes equations*, Math. Comp.**37**(1981), no. 156, 243–259. MR**628693**, 10.1090/S0025-5718-1981-0628693-0**[5]**G. Benfatto and M. Pulvirenti,*Convergence of Chorin-Marsden product formula in the half-plane*, Comm. Math. Phys.**106**(1986), no. 3, 427–458. MR**859819****[6]**Alexandre Joel Chorin,*Numerical study of slightly viscous flow*, J. Fluid Mech.**57**(1973), no. 4, 785–796. MR**0395483****[7]**Hiroshi Fujita and Tosio Kato,*On the Navier-Stokes initial value problem. I*, Arch. Rational Mech. Anal.**16**(1964), 269–315. MR**0166499****[8]**Tosio Kato,*On classical solutions of the two-dimensional nonstationary Euler equation*, Arch. Rational Mech. Anal.**25**(1967), 188–200. MR**0211057****[9]**O. A. Ladyzhenskaya,*The mathematical theory of viscous incompressible flow*, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969. MR**0254401****[10]**J. L. Lions and E. Magenes,*Nonhomogeneous boundary value problems and applications*, Springer-Verlag, 1972.**[11]**F. J. McGrath,*Nonstationary plane flow of viscous and ideal fluids*, Arch. Rational Mech. Anal.**27**(1967), 329–348. MR**0221818****[12]**Roger Temam,*On the Euler equations of incompressible perfect fluids*, J. Functional Analysis**20**(1975), no. 1, 32–43. MR**0430568****[13]**Long An Ying,*Viscosity splitting method in bounded domains*, Sci. China Ser. A**32**(1989), no. 8, 908–921. MR**1055308****[14]**L.-a. Ying,*The viscosity splitting method for the Navier-Stokes equations in bounded domains*, Science Report, Department of Mathematics and Institute of Mathematics, Peking University, October 1986.**[15]**Lung An Ying,*On the viscosity splitting method for initial-boundary value problems of the Navier-Stokes equations*, Chinese Ann. Math. Ser. B**10**(1989), no. 4, 487–512. A Chinese summary appears in Chinese Ann. Math. Ser. A 10 (1989), no. 5, 641. MR**1038384****[16]**Lungan Ying,*Viscosity splitting method for three-dimensional Navier-Stokes equations*, Acta Math. Sinica (N.S.)**4**(1988), no. 3, 210–226. A Chinese summary appears in Acta Math. Sinica 32 (1989), no. 4, 575. MR**965569**, 10.1007/BF02560577**[17]**Lung-an Ying,*Convergence study for viscous splitting in bounded domains*, Numerical methods for partial differential equations (Shanghai, 1987), Lecture Notes in Math., vol. 1297, Springer, Berlin, 1987, pp. 184–202. MR**929048**, 10.1007/BFb0078550

Retrieve articles in *Mathematics of Computation*
with MSC:
35Q30,
65N99,
76D05,
76D07

Retrieve articles in all journals with MSC: 35Q30, 65N99, 76D05, 76D07

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1990-1023053-0

Article copyright:
© Copyright 1990
American Mathematical Society