Viscous splitting for the unbounded problem of the Navier-Stokes equations

Author:
Lung-An Ying

Journal:
Math. Comp. **55** (1990), 89-113

MSC:
Primary 35Q30; Secondary 65N99, 76D05, 76D07

DOI:
https://doi.org/10.1090/S0025-5718-1990-1023053-0

MathSciNet review:
1023053

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The viscous splitting for the exterior initial-boundary value problems of the Navier-Stokes equations is considered. It is proved that the approximate solutions are uniformly bounded in the space , , and converge with a rate of in the space , where *k* is the length of the time steps.

**[1]**R. A. Adams,*Sobolev spaces*, Academic Press, New York, 1975. MR**0450957 (56:9247)****[2]**S. Agmon, A. Douglis, and L. Nirenberg,*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions*. I, Comm. Pure Appl. Math.**17**(1959), 623-727. MR**0125307 (23:A2610)****[3]**G. Alessandrini, A. Douglis, and E. Fabes,*An approximate layering method for the Navier-Stokes equations in bounded cylinders*, Ann. Mat. Pura Appl.**135**(1983), 329-347. MR**750540 (86a:35007)****[4]**J. T. Beale and A. Majda,*Rate of convergence for viscous splitting of the Navier-Stokes equations*, Math. Comp.**37**(1981), 243-259. MR**628693 (82i:65056)****[5]**G. Benfatto and M. Pulvirenti,*Convergence of Chorin-Marsden product formula in the half-plane*, Comm. Math. Phys.**106**(1986), 427-458. MR**859819 (88a:35186)****[6]**A. J. Chorin,*Numerical study of slightly viscous flow*, J. Fluid Mech.**57**(1973), 785-796. MR**0395483 (52:16280)****[7]**H. Fujita and T. Kato,*On the Navier-Stokes initial value problem*. I, Arch. Rational Mech. Anal.**16**(1964), 269-315. MR**0166499 (29:3774)****[8]**T. Kato,*On classical solutions of the two-dimensional non-stationary Euler equation*, Arch. Rational Mech. Anal.**25**(1967), 188-200. MR**0211057 (35:1939)****[9]**O. A. Ladyzhenskaya,*The mathematical theory of viscous incompressible flow*, Gordon and Breach, New York, 1969. MR**0254401 (40:7610)****[10]**J. L. Lions and E. Magenes,*Nonhomogeneous boundary value problems and applications*, Springer-Verlag, 1972.**[11]**F. J. McGrath,*Nonstationary plane flow of viscous and ideal fluids*, Arch. Rational Mech. Anal.**27**(1968), 329-348. MR**0221818 (36:4870)****[12]**R. Temam,*On the Euler equations of incompressible perfect fluids*, J. Funct. Anal.**20**(1975), 32-43. MR**0430568 (55:3573)****[13]**L.-a. Ying,*Viscosity splitting method in bounded domains*, SCi. Sinica Ser. A**32**(1989), 908-921. MR**1055308 (91h:65201)****[14]**L.-a. Ying,*The viscosity splitting method for the Navier-Stokes equations in bounded domains*, Science Report, Department of Mathematics and Institute of Mathematics, Peking University, October 1986.**[15]**-,*On the viscosity splitting method for initial boundary value problems of the Navier-Stokes equations*, Chinese Ann. Math.**10B**(1989), 487-512. MR**1038384 (91c:35123)****[16]**-,*Viscosity splitting method for three dimensional Navier-Stokes equations*, Acta Math. Sinica (N.S.)**4**(1988), 210-226. MR**965569 (90b:65193)****[17]**-,*Convergence study of viscous splitting in bounded domains*, Lecture Notes in Math., vol. 1297, Springer-Verlag, 1987, pp. 184-202. MR**929048 (89h:65163)**

Retrieve articles in *Mathematics of Computation*
with MSC:
35Q30,
65N99,
76D05,
76D07

Retrieve articles in all journals with MSC: 35Q30, 65N99, 76D05, 76D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1990-1023053-0

Article copyright:
© Copyright 1990
American Mathematical Society