Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Sieved partition functions and $ q$-binomial coefficients


Authors: Frank Garvan and Dennis Stanton
Journal: Math. Comp. 55 (1990), 299-311
MSC: Primary 11P68; Secondary 05A19, 05A30, 11B65
DOI: https://doi.org/10.1090/S0025-5718-1990-1023761-1
MathSciNet review: 1023761
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved q-binomial coefficient is the sum of those terms whose exponents are congruent to r modulo t. In this paper explicit polynomial identities in $ {q^t}$ are given for sieved q-binomial coefficients. As a limiting case, generating functions for the sieved partition function are found as multidimensional theta functions. A striking corollary of this representation is the proof of Ramanujan's congruences $ \bmod \, 5, 7$, and 11 by exhibiting symmetry groups of orders 5, 7, and 11 of explicit quadratic forms. We also verify the Subbarao conjecture for $ t = 3$, $ t = 5$, and $ t = 10$.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2 (G.-C. Rota, ed.), Addison-Wesley, Reading, Mass., 1976 (Reissued: Cambridge Univ. Press, London and New York, 1985). MR 0557013 (58:27738)
  • [2] G. E. Andrews and F. G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988), 167-171. MR 929094 (89b:11079)
  • [3] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, London, 1979. MR 568909 (81i:10002)
  • [4] M. D. Hirschhorn and M. V. Subbarao, On the parity of $ p(n)$, preprint.
  • [5] O. Kolberg, Some identities involving the partition function, Math. Scand. 5 (1957), 77-92. MR 0090608 (19:838e)
  • [6] -, Note on the parity of the partition function, Math. Scand. 7 (1959), 377-378. MR 0117213 (22:7995)
  • [7] M. V. Subbarao, Some remarks on the partition function, Amer. Math. Monthly 73 (1966), 851-854. MR 0201409 (34:1293)
  • [8] L. Winquist, Elementary proof of $ p(11m + 6) \equiv 0$ $ \pmod {11} $, J. Combin. Theory 6 (1969), 56-59. MR 0236136 (38:4434)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11P68, 05A19, 05A30, 11B65

Retrieve articles in all journals with MSC: 11P68, 05A19, 05A30, 11B65


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1023761-1
Keywords: q-binomial coefficient, partitions
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society