BOOLEAN METHODS FOR DOUBLE INTEGRATION

FRANZ-J. DELVOS

Abstract. This paper is concerned with numerical integration of continuous functions over the unit square U^2. The concept of the rth-order blending rectangle rule is introduced by carrying over the idea from Boolean interpolation. Error bounds are developed, and it is shown that rth-order blending rectangle rules are comparable with number-theoretic cubature rules. Moreover, rth-order blending midpoint rules are defined and compared with the rth-order blending rectangle rules.

1. BIVARIATE RECTANGLE RULES

The problem we consider is the numerical evaluation of integrals of the form

$$
\mathcal{J}(f) = \int_0^1 \int_0^1 f(x, y) \, dx \, dy,
$$

where f is a continuous function on the unit square $U^2 = [0, 1]^2$. Moreover, we assume that f satisfies the periodicity conditions

$$
f(x, 0) = f(x, 1), \quad f(0, y) = f(1, y) \quad (0 \leq x, y \leq 1).
$$

The inner product of $f, g \in L^2(U^2)$ is

$$
(f, g) = \int_0^1 \int_0^1 f(x, y) g(x, y) \, dx \, dy.
$$

We introduce the notations

$$
e_k(x) = \exp(i2\pi k x) \quad (k \in \mathbb{Z}),
$$

$$
e_{k,l}(x, y) = e_k(x) \cdot e_l(y) \quad (k, l \in \mathbb{Z}),
$$

where $x, y \in U$. The functions $e_{k,l} \quad (k, l \in \mathbb{Z})$ form an orthonormal basis of the Hilbert space $L^2(U^2)$. We denote by $A(U^2)$ the Wiener algebra of those functions $f \in L^2(U^2)$ with the property that the Fourier series of f is absolutely convergent:

$$
\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} |(f, e_{k,l})| < \infty.
$$

Let \(\mathcal{C}(U^2) \) denote the subspace of those functions \(f \in L^2(U^2) \) which are continuous on \(U^2 \). Moreover, \(\mathcal{C}_0(U^2) \) denotes the subspace of those functions \(f \in \mathcal{C}(U^2) \) which satisfy the periodicity conditions (1.2). It follows from relation (1.3) that
\[
A(U^2) \subseteq \mathcal{C}_0(U^2)
\]
and, for \(f \in A(U^2) \),
\[
(1.4) \quad f(x, y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} (f, e_{k,l}) \cdot e_{k,l}(x, y) \quad (x, y \in U).
\]

Let \(m \) and \(n \) be positive integers. The most obvious cubature formula is the bivariate rectangle rule:
\[
\mathcal{J}_{m,n}(f) = \frac{1}{m \cdot n} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} f \left(\frac{j}{m}, \frac{k}{n} \right).
\]
The bivariate rectangle rule is not an efficient cubature formula in view of the large number of function evaluations. On the other hand, \(\mathcal{J}_{m,n}(f) \) is a basic tool in constructing a more sophisticated cubature formula, the \(r \)-th order blending rectangle rule. For this reason we will briefly derive a convenient remainder formula for \(\mathcal{J}_{m,n}(f) \).

Proposition 1. If \(f \in A(U^2) \), then
\[
(1.5) \quad \mathcal{J}_{m,n}(f) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} (f, e_{um, vn}).
\]

Proof. In view of (1.4), we have
\[
\mathcal{J}_{m,n}(f) = \frac{1}{m \cdot n} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} (f, e_{r,s}) \cdot \frac{1}{m \cdot n} \sum_{j=0}^{m-1} e_{r,j} \left(\frac{j}{m} \right) \sum_{k=0}^{n-1} e_{s,k} \left(\frac{k}{n} \right)
= \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} (f, e_{um, vn}). \quad \Box
\]

It is useful to define the series
\[
R_{m,\infty}(f) = \sum_{u \neq 0} (f, e_{um,0}), \quad R_{\infty,n}(f) = \sum_{v \neq 0} (f, e_{0,vn}),
\]
\[
R_{m,n}(f) = \sum_{u \neq 0} \sum_{v \neq 0} (f, e_{um,vn}).
\]

Proposition 2. If \(f \in A(U^2) \), then the error in the bivariate rectangle rule is
\[
(1.6) \quad \mathcal{J}_{m,n}(f) - \mathcal{J}(f) = R_{m,\infty}(f) + R_{\infty,n}(f) + R_{m,n}(f).
\]
Proof. It follows from relation (1.5) that

$$J_{m,n}(f) = (f, e_{0,0}) + R_{m,\infty}(f) + R_{\infty,n}(f) + R_{m,n}(f).$$

Since $J(f) = (f, e_{0,0})$, Proposition 2 is proved. □

Following Korobov, we define, for each $a \geq 1$, the linear space

$$E^a(U^2) = \{ f \in L^2(U^2) : (f, e_{m,n}) = O((m \cdot n)^{-a}) \ (m, n \to \infty) \},$$

where $m = \max\{1, |m|\}$ ($m \in \mathbb{Z}$). It is easily seen that

$$E^a(U^2) \subseteq A(U^2) \quad (a > 1).$$

We denote by $C^{p,p}(U^2)$ the linear subspace of $C(U^2)$ of those functions f whose partial derivatives satisfy

$$D^k,l f \in C(U^2) \quad (0 \leq k, l \leq p).$$

Similarly, $C^{q,q}(U^2)$ is the linear subspace of $C_q(U^2)$ of functions f with

$$D^k,l f \in C_q(U^2) \quad (0 \leq k, l \leq p).$$

It was shown in Baszenski and Delvos [1] that

$$C^{q-1,q-1}(U^2) \cap C^{q+1,q+1}(U^2) \subseteq E^{q+1}(U^2) \quad (q \in \mathbb{N}).$$

Proposition 3. If $f \in E^a(U^2)$ with $a > 1$, then the error in the bivariate rectangle rule satisfies

$$J_{m,n}(f) - J(f) = O((m^{-a} + n^{-a}) \ (m, n \to \infty)).$$

Proof. Since $f \in E^a(U^2)$, we have

$$R_{m,\infty}(f) = O(m^{-a}), \quad R_{\infty,n}(f) = O(n^{-a}),$$

$$R_{m,n}(f) = O(m^{-a} \cdot n^{-a}) \ (m, n \to \infty),$$

from which (1.9) follows by virtue of Proposition 2. □

Proposition 4. If $f \in C^{q-1,q-1}(U^2) \cap C^{q+1,q+1}(U^2)$ with $q \in \mathbb{N}$, then the error in the bivariate rectangle rule satisfies

$$J_{m,n}(f) - J(f) = O((m^{-q-1} + n^{-q-1}) \ (m, n \to \infty)).$$

Proof. Using (1.8), an application of Proposition 3 yields (1.11) □

2. rTH-ORDER BLENDING RECTANGLE RULES

We introduce the rth-order sum of bivariate rectangle rules

$$S_r^2(f) = \sum_{m=1}^{r} J_{2^m,2^{r+1-m}}(f) \quad (r \in \mathbb{Z}_+).$$

Then the rth-order blending rectangle rule $J_r^2(f)$ is

$$J_r^2(f) = S_r^2(f) - S_{r-1}^2(f).$$
where \(r \in \mathbb{N} \) and \(r > 1 \). The construction of the \(r \)th-order blending rectangle rule resembles the explicit formula of the interpolation projector of \(r \)th-order blending (Delvos and Posdorf [3] and Delvos [2]). The cubature points of \(\mathcal{J}^2_r(f) \) are mainly determined by the points occurring in \(\mathcal{S}^2_r(f) \):

\[
\bigcup_{m=1}^{r} \{(j \cdot 2^{-m}, k \cdot 2^{-r-1+m}) : 0 \leq j < 2^m, \ 0 \leq k < 2^{r+1-m}\}.
\]

Their number is given by

\[
n_r = (r + 1) \cdot 2^r.
\]

Next we will determine a remainder formula for the \(r \)th-order blending rectangle rule.

Proposition 5. If \(f \in A(U^2) \), then the error in the \(r \)th-order blending rectangle rule is

\[
\mathcal{J}^2_r(f) - \mathcal{J}(f) = R_{2^r, \infty}(f) + R_{\infty, 2^r}(f)
\]

\[
\quad + \sum_{m=1}^{r} R_{2^m, 2^{r+1-m}}(f) - \sum_{m=1}^{r-1} R_{2^m, 2^{r-m}}(f).
\]

Proof. Using (1.6), we get

\[
\mathcal{J}^2_r(f) - \mathcal{J}(f) = \sum_{m=1}^{r} (\mathcal{J}_{2^m, 2^{r+1-m}}(f) - \mathcal{J}(f)) - \sum_{m=1}^{r-1} (\mathcal{J}_{2^m, 2^{r-m}}(f) - \mathcal{J}(f))
\]

\[
= \sum_{m=1}^{r} (R_{2^m, 2^{r+1-m}}(f) + R_{2^m, \infty}(f) + R_{\infty, 2^m}(f))
\]

\[
- \sum_{m=1}^{r-1} (R_{2^m, 2^{r-m}}(f) + R_{2^m, \infty}(f) + R_{\infty, 2^m}(f))
\]

\[
= R_{2^r, \infty}(f) + R_{\infty, 2^r}(f)
\]

\[
\quad + \sum_{m=1}^{r} R_{2^m, 2^{r+1-m}}(f) - \sum_{m=1}^{r-1} R_{2^m, 2^{r-m}}(f). \quad \square
\]

Proposition 6. If \(f \in E^a(U^2) \) with \(a > 1 \), then the error in the \(r \)th-order blending rectangle rule is

\[
\mathcal{J}^2_r(f) - \mathcal{J}(f) = \mathcal{O}((r + 1) \cdot (2^r)^{-a}) \quad (r \to \infty).
\]

Proof. From (1.10) we have

\[
R_{2^r, \infty}(f) = \mathcal{O}((2^r)^{-a}), \quad R_{\infty, 2^r}(f) = \mathcal{O}((2^r)^{-a}) \quad (r \to \infty),
\]

\[
R_{2^m, 2^{r+1-m}}(f) = \mathcal{O}((2^{r+1})^{-a}) \quad (1 \leq m \leq r, \ r \to \infty),
\]

\[
R_{2^m, 2^{r-m}}(f) = \mathcal{O}((2^r)^{-a}) \quad (1 \leq m < r, \ r \to \infty).
\]

Now (2.6) follows from the remainder formula (2.5). \(\square \)
Remark 1. Recall that the number of cubature points of the rth-order blending rectangle rule $J^2_r(f)$ is bounded by

$$n_r = (r + 1)2^r.$$

It is easily seen that the error relation (2.6) of the rth-order blending rectangle rule obtains the form

$$J^2_r(f) - J(f) = O((\log(nr))^{(r+1)/(2r)}) \quad (r \to \infty),$$

where $f \in E^a(U^2)$ with $a > 1$. Thus, the rth-order blending rectangle rule is comparable with the bivariate number-theoretic "good-lattice" rules (see Sloan [5]). The attractive feature of the rth-order blending rectangle rule is its easy computation based on relations (2.1) and (2.2).

Proposition 7. If $f \in C_0^{q-1}(U^2) \cap C^{q+1}(U^2)$ with $q \in \mathbb{N}$, then the error in the rth-order blending rectangle rule satisfies

$$(2.7) \quad J^2_r(f) - J(f) = O((r + 1) \cdot (2^r)^{-q-1}) \quad (r \to \infty).$$

Proof. Use of (1.8) and an application of Proposition 6 yields (2.7). □

3. Bivariate midpoint rules

Let m and n be positive integers. A simple cubature formula closely related to the bivariate rectangle rule is the bivariate midpoint rule:

$$M_{m,n}(f) = \frac{1}{m \cdot n} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} f \left(\frac{2j + 1}{2m}, \frac{2k + 1}{2n} \right).$$

Again, the bivariate midpoint rule is not an efficient cubature formula in view of the large number of function evaluations. However, $M_{m,n}(f)$ is a basic tool in constructing the more sophisticated cubature formula of the rth-order blending midpoint rule. For this reason we will briefly derive a convenient remainder formula for $M_{m,n}(f)$.

Proposition 8. If $f \in A(U^2)$, then

$$(3.1) \quad M_{m,n}(f) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} (f, e_{um,vn}) \cdot (-1)^{u+v}.$$

Proof. By (1.4), we have

$$M_{m,n}(f) = \frac{1}{m \cdot n} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} f \left(\frac{2j + 1}{2m}, \frac{2k + 1}{2n} \right)$$

$$= \sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} (f, e_{rs}) \frac{1}{m \cdot n} \sum_{j=0}^{m-1} e_r \left(\frac{2j + 1}{2m} \right) \sum_{k=0}^{n-1} e_s \left(\frac{2k + 1}{2n} \right)$$

$$= \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} (f, e_{um,vn}) \cdot (-1)^{u+v}. \, \Box$$
We define the series
\[Q_{m, \infty}(f) = \sum_{u \neq 0} (f, e_{um, 0}) \cdot (-1)^u, \]
\[Q_{\infty, n}(f) = \sum_{v \neq 0} (f, e_{0, vn}) \cdot (-1)^v, \]
\[Q_{m, n}(f) = \sum_{u \neq 0} \sum_{v \neq 0} (f, e_{um, vn}) \cdot (-1)^{u+v}. \]

Proposition 9. If \(f \in A(U^2) \), then the error in the bivariate midpoint rule is

\[\mathcal{M}_{m, n}(f) - \mathcal{I}(f) = Q_{m, \infty}(f) + Q_{\infty, n}(f) + Q_{m, n}(f). \]

Proof. From (3.1) we get
\[\mathcal{M}_{m, n}(f) = (f, e_{0, 0}) + Q_{m, \infty}(f) + Q_{\infty, n}(f) + Q_{m, n}(f). \]
Since \(\mathcal{I}(f) = (f, e_{0, 0}) \), Proposition 9 follows. \(\square \)

Proposition 10. If \(f \in E^a(U^2) \) with \(a > 1 \), then the error in the bivariate midpoint rule satisfies

\[\mathcal{M}_{m, n}(f) - \mathcal{I}(f) = \mathcal{O}(m^{-a} + n^{-a}) \quad (m, n \to \infty). \]

Proof. Since \(f \in E^a(U^2) \), we have
\[Q_{m, \infty}(f) = \mathcal{O}(m^{-a}), \quad Q_{\infty, n}(f) = \mathcal{O}(n^{-a}), \]
\[Q_{m, n}(f) = \mathcal{O}(m^{-a} \cdot n^{-a}) \quad (m, n \to \infty), \]
and (3.3) follows from Proposition 9. \(\square \)

Proposition 11. If \(f \in E_0^{q-1, q-1}(U^2) \cap E^{q+1, q+1}(U^2) \) with \(q \in \mathbb{N} \), then the error in the bivariate midpoint rule satisfies

\[\mathcal{M}_{m, n}(f) - \mathcal{I}(f) = \mathcal{O}(m^{-q-1} + n^{-q-1}) \quad (m, n \to \infty). \]

Proof. The proof of Proposition 11 is similar to that of Proposition 4. \(\square \)

4. **RTh-ORDER BLENDING MIDPOINT RULES**

We introduce the \(r \)-th order sum of bivariate midpoint rules

\[T_r^2(f) = \sum_{m=0}^{r-1} \mathcal{M}_{2m, 2r-1-n}(f) \quad (r \in \mathbb{N}). \]

Then the \(r \)-th order blending midpoint rule \(\mathcal{M}_r^2(f) \) is

\[\mathcal{M}_r^2(f) = T_r^2(f) - T_{r-1}^2(f), \]
where \(r \in \mathbb{N} \) and \(r > 1 \). The construction of the \(r \)-th order blending midpoint rule is analogous to the construction of the \(r \)-th order blending rectangular rule. While the latter may be interpreted as an interpolatory cubature formula based
on Boolean periodic spline interpolation, no such interpolatory characterization holds for the \(r \)th-order blending midpoint rule.

The cubature points of \(M_r^2(f) \) are mainly determined by the points occurring in \(T_{r-1}^2(f) \):

\[
\bigcup_{m=0}^{r-1} \{(2j+1) \cdot 2^{-m-1}, (2k+1) \cdot 2^{-r+m} \colon 0 \leq j < 2^m, 0 \leq k < 2^{r-1-m}\}.
\]

Their number is given by

\[
m_r = r \cdot 2^{r-1}.
\]

Next we will determine a remainder formula for the \(r \)th-order blending midpoint rule.

Proposition 12. If \(f \in A(U^2) \), then the error in the \(r \)th-order blending midpoint rule is

\[
M_r^2(f) - J(f) = Q_{2^{r-1}, \infty}(f) + Q_{\infty, 2^{r-1}}(f) + \sum_{m=0}^{r-2} Q_{2^m, 2^{r-1-m}}(f) - \sum_{m=0}^{r-2} Q_{2^m, 2^{r-2-m}}(f).
\]

Proof. In view of relations (3.2), (3.4), (4.1), and (4.3), the proof of (4.5) is similar to that of (2.5). \(\square \)

Proposition 13. If \(f \in E^a(U^2) \) with \(a > 1 \), then the error in the \(r \)th-order blending midpoint rule is

\[
M_r^2(f) - J(f) = \Theta(r \cdot (2^{r-1})^{-a}) \quad (r \to \infty).
\]

Proof. In view of relations (3.4) and (4.5), the proof of (4.6) is similar to that of (2.6). \(\square \)

Remark 2. Recall that the number of cubature points of the \(r \)th-order blending midpoint rule \(M_r^2(f) \) is mainly determined by \(m_r = r \cdot 2^{r-1} \). It is easily seen that the error relation (4.6) of the \(r \)th-order blending midpoint rule obtains the form

\[
M_r^2(f) - J(f) = \Theta((\log(m_r))^{a+1} \cdot (m_r)^{-a}) \quad (r \to \infty),
\]

where \(f \in E^a(U^2) \) with \(a > 1 \). Thus, the \(r \)th-order blending midpoint rule is comparable with the bivariate number-theoretic “good lattice” rules (see Sloan [5]). Again, the attractive feature of the \(r \)th-order blending midpoint rule is its easy computation based on relations (4.1) and (4.2).

Proposition 14. If \(f \in C_{0}^{q-1}, q-1(U^2) \cap C_{q+1}, q+1(U^2) \) with \(q \in \mathbb{N} \), then the error in the \(r \)th-order blending midpoint rule satisfies

\[
M_r^2(f) - J(f) = \Theta(r \cdot (2^{r-1})^{-q-1}) \quad (r \to \infty).
\]

Proof. The proof of Proposition 14 is similar to that of Proposition 7. \(\square \)
5. A NUMERICAL EXAMPLE

We consider the double integral

$$\mathcal{I}(f) = \int_0^1 \int_0^1 f(x, y) \, dx \, dy$$

with the function

$$f(x, y) = \frac{x + y}{1 + x \cdot y} \quad (x, y \in U).$$

The function f is an element of the Korobov space $E^1(U^2)$. Following Hua and Wang [4, p. 122] we introduce the function

$$g(x, y) = \frac{1}{4}(f(x, y) + f(x, 1 - y) + f(1 - x, y) + f(1 - x, 1 - y)).$$

It is easily seen that

$$\mathcal{I}(g) = \mathcal{I}(f) = 2 \cdot (\log(4) - 1)$$

and

$$g \in \mathcal{E}_0^{0, 0}(U^2) \cap \mathcal{E}_2^{2, 2}(U^2).$$

It follows from relation (1.8) that Propositions 4 and 7 are applicable to g with $q = 1$. The errors and the number of cubature points for the blending rectangle rule and the ordinary rectangle rule are shown in Table 1.

Table 1

Errors in blending and ordinary rectangle rules

<table>
<thead>
<tr>
<th>r</th>
<th>$(r + 1) \cdot 2^r$</th>
<th>$\mathcal{I}_r^2(g) - \mathcal{I}(g)$</th>
<th>2^{2r}</th>
<th>$\mathcal{I}_{r, 2^r}(g) - \mathcal{I}(g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0.01009</td>
<td>4</td>
<td>0.01009</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>0.00365</td>
<td>16</td>
<td>0.00282</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>0.00120</td>
<td>64</td>
<td>0.00072</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>0.00037</td>
<td>256</td>
<td>0.00018</td>
</tr>
<tr>
<td>5</td>
<td>192</td>
<td>0.00011</td>
<td>1024</td>
<td>0.00005</td>
</tr>
<tr>
<td>6</td>
<td>448</td>
<td>0.00003</td>
<td>4096</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

Similarly, it follows from relation (1.8) that Propositions 11 and 14 are applicable to g with $q = 1$. Table 2 shows the errors and the number of cubature points for the blending midpoint rule and the ordinary midpoint rule. In Figure 1 we exhibit the distribution of cubature points in rth-order sum of midpoint rules.

Remark 3. It follows from (2.3) and (4.3) that the cubature points of $T_r^2(f)$ form a subset of the cubature points of $S_r^2(f)$ which are not contained in the set of cubature points of $S_{r-1}^2(f)$.

Remark 4. The Boolean methods for double integration can be extended to arbitrary dimensions by using the method of d-variate Boolean interpolation developed in [2]. This is the topic of a forthcoming paper.
Table 2

Errors in blending and ordinary midpoint rules

<table>
<thead>
<tr>
<th>r</th>
<th>$r \cdot 2^{r-1}$</th>
<th>$m^2_r(g) - J(g)$</th>
<th>2^{2r-2}</th>
<th>$m_{2r-1,2r-1}(g) - J(g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-0.02741</td>
<td>1</td>
<td>-0.02741</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-0.00317</td>
<td>4</td>
<td>-0.00611</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>0.00028</td>
<td>16</td>
<td>-0.00148</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>0.00035</td>
<td>64</td>
<td>-0.00037</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>0.00016</td>
<td>256</td>
<td>-0.00009</td>
</tr>
<tr>
<td>6</td>
<td>192</td>
<td>0.00006</td>
<td>1024</td>
<td>-0.00002</td>
</tr>
</tbody>
</table>

Figure 1

Points of rth-order sum of midpoint rules

Bibliography

Lehrstuhl für Mathematik I, Universität GH Siegen, Hölderlinstrasse 3, D-5900 Siegen, West Germany