Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Plana's summation formula for $ \sum\sp \infty\sb {m=1,3,\cdots}m\sp {-2}\sin(m\alpha),m\sp {-3}\cos(m\alpha),m\sp {-2}A\sp m,m\sp {-3}A\sp m$


Authors: Kevin M. Dempsey, Dajin Liu and John P. Dempsey
Journal: Math. Comp. 55 (1990), 693-703
MSC: Primary 65B10
DOI: https://doi.org/10.1090/S0025-5718-1990-1035929-9
MathSciNet review: 1035929
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The four series

\begin{displaymath}\begin{array}{*{20}{c}} {\sum\limits_0^\infty {\sin (2k + 1)\... ...mits_0^\infty {{A^{2k + 1}}/{{(2k + 1)}^3}} } } \\ \end{array} \end{displaymath}

are very slowly convergent for $ 0 \leq \alpha \leq \pi $ and as $ A \to {1^ - }$. Direct summation involves thousands of terms to get the accuracy desired. Plana's summation formula along with Romberg's method of integration significantly and consistently improves the convergence and accuracy for the above series.

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Applied Mathematics Series No. 55, National Bureau of Standards, 1964.
  • [2] L. M. Delves and J. L. Mohamed, Computational methods for integral equations, Cambridge Univ. Press, Cambridge, 1985. MR 837187 (87j:65159)
  • [3] J. P. Dempsey, L. M. Keer, N. B. Patel, and M. L. Glasser, Contact between plates and unilateral supports, ASME J. Appl. Mech. 51 (1984), 324-328.
  • [4] J. P. Dempsey and Hui Li, Rectangular plates on unilateral edge supports: Part 1--Theory and numerical analysis, ASME J. Appl. Mech. 53 (1986), 146-150.
  • [5] -, Rectangular plates on unilateral edge supports: Part 2--Implementation; concentrated and uniform loading, ASME J. Appl. Mech. 53 (1986), 151-156.
  • [6] M. L. Glasser, The summation of series, SIAM J. Math. Anal. 2 (1971), 595-600. MR 0303156 (46:2294)
  • [7] -, personal communication, Clarkson University, 1988.
  • [8] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, Academic Press, New York, 1965.
  • [9] N. Grossman, personal communication, University of California at Los Angeles, 1988.
  • [10] E. R. Hansen, A table of series and products, Prentice-Hall, Englewood Cliffs, N.J., 1975.
  • [11] P. Henrici, Elements of numerical analysis, Wiley, New York, 1964, pp. 206-207. MR 0166900 (29:4173)
  • [12] -, Applied and computational complex analysis, Vol. I, Wiley, New York, 1974, p. 274. MR 0372162 (51:8378)
  • [13] -, Essentials of numerical analysis with pocket calculator demonstrations, Wiley, New York, 1982. MR 655251 (83h:65002)
  • [14] D. Levin, Development of non-linear transformations for improving convergence of sequences, Internat. J. Comput. Math. B 3 (1973), 371-388. MR 0359261 (50:11716)
  • [15] L. Lewin, Dilogarithms and associated functions, MacDonald, London, 1958. MR 0105524 (21:4264)
  • [16] E. Lindelöf, Le calcul des résidus et ses applications à la théorie des fonctions, Gauthier-Villars, 1905; reprint, Chelsea, New York, 1947.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65B10

Retrieve articles in all journals with MSC: 65B10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1035929-9
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society