Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Analysis of spectral projectors in one-dimensional domains


Author: Y. Maday
Journal: Math. Comp. 55 (1990), 537-562
MSC: Primary 41A65; Secondary 65J05, 65N30
DOI: https://doi.org/10.1090/S0025-5718-1990-1035939-1
MathSciNet review: 1035939
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we analyze a class of projection operators with values in a subspace of polynomials. These projection operators are related to the Hilbert spaces involved in the numerical analysis of spectral methods. They are, in the first part of the paper, the standard Sobolev spaces and, in the second part, some weighted Sobolev spaces, the weight of which is related to the orthogonality relation satisfied by the Chebyshev polynomials. These results are used to study the approximation of a model fourth-order problem.


References [Enhancements On Off] (What's this?)

  • [1] C. Bernardi and Y. Maday, Properties of some weighted Sobolev spaces and application to spectral approximation, SIAM J. Numer. Anal. 26 (1989), 769-829. MR 1005511 (91c:46046)
  • [2] -, Some spectral approximation of one-dimensional fourth-order problems, J. Approx. Theory (to appear).
  • [3] C. Bernardi, Y. Maday, and B. Métivet, Spectral approximation of the periodic nonperiodic Navier-Stokes equations, Numer. Math. 51 (1987), 655-700. MR 914344 (89f:65118)
  • [4] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982), 67-86. MR 637287 (82m:41003)
  • [5] -, Variational methods in the theoretical analysis of spectral approximation, Proc. Sympos. on Spectral Methods for P.D.E. (R. G. Voigt, D. Gottlieb, and M. Y. Hussaini, eds.), SIAM, Philadelphia, 1984, pp. 55-78. MR 758262 (86d:65143)
  • [6] P. Grisvard, Espaces intermédiaires entre espaces de Sobolev avec poids, Ann. Scuola Norm. Sup. Pisa 17 (1963). MR 0160104 (28:3318)
  • [7] -, Private communication.
  • [8] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. I, Dunod, 1968.
  • [9] J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5-68. MR 0165343 (29:2627)
  • [10] Y. Maday and B. Métivet, Estimation d'erreur pour l'approximation des équations de Stokes par une méthode spectrale, Rech. Aérospat. 5 (1983), 237-244.
  • [11] -, Chebyshev spectral approximation of Navier-Stokes equations in a two-dimensional domain, $ {{\text{M}}^2}{\text{AN}}$ 21 (1986), 93-123. MR 882688 (88j:65222)
  • [12] Y. Maday and A. Quarteroni, Legendre and Chebyshev spectral approximation of Burgers' equation, Numer. Math. 37 (1981), 321-332. MR 627106 (83c:65246)
  • [13] F. Montigny-Rannou, Etude d'un problème de stabilité par résolution de l'équation de Orr-Sommerfeld. Application à la détermination d'un champs de vitesse initial turbulent, ONERA-RT 4/3419 AY, 1980.
  • [14] J. Necas, Les méthodes directes en théorie des équations elliptiques, Édition de l'Académie Tchécoslovaque des Sciences, Prague, 1967.
  • [15] S. A. Orszag, Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech. 50 (1971), 689-703.
  • [16] A. Quarteroni, Blended Fourier and Chebyshev interpolation, J. Approx. Theory 51 (1987), 115-126. MR 909803 (88k:41012)
  • [17] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionelle, Akad. Kiado, Budapest, 1952.
  • [18] G. Sacchi Landriani and H. Vandeven, Polynomial approximation of divergence-free functions, Math. Comp. 52 (1989), 103-130. MR 971405 (89m:65021)
  • [19] E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J. Numer. Anal. 23 (1986), 1-10. MR 821902 (87c:65048)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A65, 65J05, 65N30

Retrieve articles in all journals with MSC: 41A65, 65J05, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1035939-1
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society