Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Cyclic large sets of Steiner triple systems of order $ 15$


Author: Kevin T. Phelps
Journal: Math. Comp. 55 (1990), 821-824, S1
MSC: Primary 05B07
DOI: https://doi.org/10.1090/S0025-5718-1990-1035942-1
MathSciNet review: 1035942
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We examine a class of large sets of Steiner triple systems of order 15 having an automorphism consisting of two fixed points and a 13-cycle. We exhibit all members of this class: there are 256 nonisomorphic systems. We examined these members for initial configurations which could lead to a large set of Steiner quadruple systems of order 16 and established that no large set exists having three fixed points and a 13-cycle.


References [Enhancements On Off] (What's this?)

  • [1] S. Bays, Sur les systèmes cycliques de triples de Steiner différents pour N premier (ou puisance de nombre premier) de la forme $ 6n + 1$, II-III, Comment. Math. Helv. 3 (1931), 22-41. MR 1509423
  • [2] F. N. Cole, L. D. Cummings, and H. S. White, Complete enumeration of triple systems in 15 elements, Proc. Nat. Acad. SCi. U.S.A. 3 (1917), 197-199.
  • [3] R. H. F. Denniston, Some packings with Steiner triple systems, Discrete Math. 9 (1974), 213-227. MR 0369114 (51:5350)
  • [4] -, Sylvester's problems of the 15 school girls, Discrete Math. 9 (1974), 229-233.
  • [5] M. Hall, Jr., and J. D. Swift, Determination of Steiner triple systems of order 15, MTAC 10 (1956), 186-194. MR 0084142 (18:816d)
  • [6] E. S. Kramer and D. M. Mesner, The possible (impossible) systems of 11 disjoint $ S(2,3,13)$'s ($ S(3,4,14)$'s) with automorphism of order 11, Utilitas Math. 7 (1975), 55-58. MR 0371680 (51:7898)
  • [7] -, Intersections among Steiner systems, J. Combin. Theory Ser. A 16 (1974), 273-285. MR 0335296 (49:78)
  • [8] Jia-Xi Lu, On large sets of disjoint Steiner triple systems. I, J. Combin. Theory Ser. A 34 (1983), 140-146. MR 692824 (84e:05031a)
  • [9] -, On large sets of disjoint Steiner triple systems. II, J. Combin. Theory Ser. A 34 (1983), 147-155. MR 692825 (84e:05031b)
  • [10] -, On large sets of disjoint Steiner triple systems. III, J. Combin. Theory Ser. A 34 (1983), 156-182. MR 692826 (84e:05031c)
  • [11] -, On large sets of disjoint Steiner triple systems. IV, J. Combin. Theory Ser. A 37 (1984), 136-163. MR 757612 (86a:05019)
  • [12] -, On large sets of disjoint Steiner triple systems. V, J. Combin. Theory Ser. A 37 (1984), 164-188.
  • [13] -, On large sets of disjoint Steiner triple systems. VI, J. Combin. Theory Ser. A 37 (1984), 189-192.
  • [14] -, On large sets of disjoint Steiner triple systems. VII, manuscript.
  • [15] R. A. Mathon, K. T. Phelps, and A. Rosa, Small Steiner systems and their properties, Ars Combin. 15 (1983), 3-100. MR 706292 (85e:05027a)
  • [16] R. M. Wilson, Some partitions of all triples into Steiner triple systems, Hypergraph Seminar, Lecture Notes in Math., vol. 411, Springer, Berlin, 1974, pp. 267-277. MR 0369100 (51:5336)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 05B07

Retrieve articles in all journals with MSC: 05B07


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1035942-1
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society